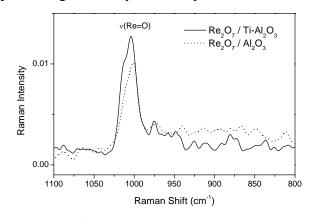
Spectroscopic characterization of supported rhenium oxide catalysts for olefin metathesis: effect of additives.


S. Fanutti, C. Querci, M. Russo and M. Salvalaggio*

Polimeri Europa S.p.A., Istituto Guido Donegani Via G. Fauser 4 – 28100, Novara

Olefin metathesis is a reaction which finds very important industrial applications in petrochemical intermediates, polymers and specialty chemicals ^[1]. Among the heterogeneous catalysts, rhenium oxide dispersed over γ -alumina (Re₂O₇/Al₂O₃) proved to be very interesting, due to the high activity and selectivity under mild reaction conditions. Nevertheless, the catalytic activity increases quasi-exponentially with the rhenium content and is unfortunately very low at low coverage. A promising route to improve the catalytic performance in the region of low rhenium loadings is the incorporation of other metal oxide as additives (such as V₂O₅, MoO₃ and WO₃ ^[2]). We observed a similar catalytic improvement pre-treating the γ -Al₂O₃ support with a transition metal chloride (TiCl₄, FeCl₃).

In order to clarify the interaction of rhenium oxide with the support, we investigated the effect of additives on supported rhenium oxide catalysts. Comparing the FT-Raman spectra of the Re₂O₇/Al₂O₃ catalyst with and without additives, similar isolated monografted tri-oxo species were evidenced in both cases. Otherwise, in the modified Re₂O₇/Al₂O₃ catalyst a slight increase in the Re=O stretching barycentre toward higher frequencies was observed (fig. 1), indicating a reinforcement of the Re=O bond and reflecting an increase in acidity of the Re^{VII} centres.

With the aim of confirm this evidence, the catalysts were characterised by FT-IR spectroscopy of adsorbed pyridine, one of the most commonly used probe molecule to study the surface acidity of heterogeneous catalysts ^[3]. A further increase in surface Lewis acidity with respect to the unmodified Re₂O₇/Al₂O₃ catalyst was in fact observed (fig. 2), confirming the determining role of Lewis acidity in promoting the catalytic activity of surface rhenium sites.

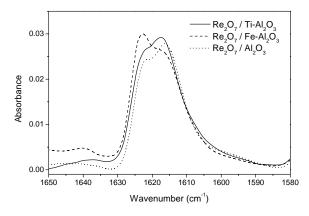


Fig. 2 – FT-IR spectra of adsorbed pyridine.

^[1] J.C. Mol., J. Mol. Catal. A: Chemical, 213 (2004) 39.

^[2] B. Mitra, X. Gao, I. E. Wachs, A.M. Hirt e G. Deo, Phys. Chem. Chem. Phys., 3 (2001) 1144.

^[3] G. Busca, Catal. Today, 41 (1998) 191-206.

^{*}Corresponding author: mario.salvalaggio@polimerieuropa.com