

ТШ

A mixed variable gyrokinetic model for electromagnetic gyrokinetic simulations

Eric Sonnendrücker

Max-Planck Institute for Plasma Physics

and

TU Munich

with: Roman Hatzky, Ralf Kleiber, Axel Könies, Alexey Mishchenko

Vlasovia 2016, 1 June 2016

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

Outline

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

Motivation

- Solve Alfven eigenmode problems with gyrokinetic PIC codes
- Family of PIC codes started at EPFL
 - ORB5 (EPFL), originally electrostatic Tokamak code
 - NEMORB (IPP Garching), electromagnetic version
 - EUTERPE (IPP Greifswald), electromagnetic stellarator code
 - GYGLES (IPP Garching and Greifswald): simplified 2D version

- Cancellation problem can be handled with adaptive control variate and meticulous numerics (Hatzky et al. JCP 07)
- Unstable grid modes requiring very low time step

Noise reduction is essential

- PIC is a Monte Carlo approximation. Markers realisations of a stochastic process with probability density *f*.
- ► The Monte Carlo error for a simulation based on a random variable X is given by √V(X)/N.
- \blacktriangleright The idea of variance reduction techniques that are essential for efficient Monte Carlo simulations is to find a random variable \tilde{X} so that

$$\mathbb{E}(ilde{X}) = \mathbb{E}(X) \quad ext{ and } \mathbb{V}(ilde{X}) \ll \mathbb{V}(X).$$

- Two such techniques are efficiently used in PIC simulations
 - 1. Importance sampling: weighted PIC
 - 2. Control variates: δf PIC
- Both have been historically developed for other purposes. First MC interpretation by Aydemir 1994. See also Hatzky.
- Both techniques are still not mainstream in PIC simulations because of weight mixing and weight spreading issues.

Importance sampling to the PIC method

- Instead of initialising the particle positions according to initial particle distribution f₀, use adequately chosen marker distribution g₀.
- For each marker z_k weight is defined by $w_k = f_0(z_k)/g_0(z_k)$.
- ▶ Let marker density evolve like particle density: g is solution of the same Fokker-Planck (or Vlasov) equation as f, only with different initial condition.
- As f and g are conserved along the same characteristics w_k is constant in time:

$$w_k = rac{f(t, \mathbf{z}_k(t))}{g(t, \mathbf{z}_k(t))} = rac{f_0(\mathbf{z}_k(0))}{g_0(\mathbf{z}_k(0))}.$$

Good way to initialise marker dependent on physics problem.

Control variates

- Guiding idea: compute as little as possible with noisy particle data.
- In gyrokinetic PIC: use analytical background f⁰ to compute bulk of charge an current densities, *e.g.*

$$\rho_s = e_s \left(\int f_s^0 \,\mathrm{d}v + \int (f_s - f_s^0) \,\mathrm{d}v \right).$$

- Small modification in existing PIC code. Really full f PIC code carrying in addition time dependent weights for noise reduced computation of source terms for field equations.
- ► Initialisation: Importance weights for $\delta f = f f^0$ defined by the random variable

$$W^{0} = \frac{f_{0}(\mathbf{Z}^{0}) - f^{0}(0, \mathbf{Z}^{0})}{g_{0}(\mathbf{Z}^{0})} = W - \frac{f^{0}(0, \mathbf{Z}^{0})}{g_{0}(\mathbf{Z}^{0})}$$

Update: (No linearisation involved)

$$W^n = rac{f(t_n, \mathbf{Z}^n) - f^0(t_n, \mathbf{Z}^n)}{g(t_n, \mathbf{Z}^n)} = rac{f_0(\mathbf{Z}^0) - f^0(t_n, \mathbf{Z}^n)}{g_0(\mathbf{Z}^0)} = W - rac{f^0(t_n, \mathbf{Z}^n)}{g_0(\mathbf{Z}^0)}.$$

Outline

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

Reduction of 6D Vlasov-Maxwell for efficient simulation

- Posed in 6D phase space! Dimension reduction if possible would help.
- Large magnetic field imposes very small time step to resolve the rotation of particles along field lines.

- Physics of interest is low frequency. Remove light waves: Darwin instead of Maxwell.
- ▶ Debye length small compared to ion Larmor radius. Quasi-neutrality assumption n_e = n_i needs to be imposed instead of Poisson equation for electric field.

Towards a reduced model

- Scale separation: fast motion around magnetic field lines can be averaged out.
- Idea: separate motion of the guiding centre from rotation by a change of coordinates.
- For constant magnetic field can be done by change of coordinates: X = x − ρ_L guiding centre + kind of cylindrical coordinates in v: v_{||}, μ = ½mv²_⊥/ω_c, θ.
- Mixes position and velocity variables.
- Perturbative model for slowly varying magnetic field.
- Several small parameters
 - gyroperiod, Debye length
 - Magnetic field in tokamak varies slowly: $\epsilon_B = |\nabla B|/|B|$
 - Time dependent fluctuating fields are small.

- ► Long time magnetic confinement of charged particles depends on existence of first adiabatic invariant (Northrop 1963): $\mu = \frac{1}{2}mv_{\perp}^2/\omega_c.$
- Geometric reduction based on making this adiabatic invariant an exact invariant.
- Two steps procedure:
 - Start from Vlasov-Maxwell particle Lagrangian and reduce it using Lie transforms such that it is independent of gyromotion up to second order
 - Plug particle Lagrangian into Vlasov-Maxwell field theoretic action and perform further reduction.
- End product is gyrokinetic field theory embodied in Lagrangian. Symmetries of Lagrangian yield exact conservation laws thanks to Noether Theorem.

 \blacktriangleright Consider given electromagnetic field defined by scalar potential ϕ and vector potential ${\bf A}$ such that

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi, \quad \mathbf{B} = \nabla \times \mathbf{A}.$$

► The non relativistic equations of motion of a particle in this electromagnetic field is obtained from Lagrangian (here phase space Lagrangian p · q – H in non canonical variables for later use)

$$L_s(\mathbf{x},\mathbf{v},\dot{\mathbf{x}},t) = (m_s\mathbf{v} + e_s\mathbf{A})\cdot\dot{\mathbf{x}}^2 - (\frac{1}{2}m_sv^2 + e_s\phi).$$

where $\mathbf{p} = m_s \mathbf{v} + e_s \mathbf{A}(t, \mathbf{x})$, $H = m_s v^2/2 + e_s \phi(t, \mathbf{x})$ are canonical momentum and hamiltonian.

Abstract geometric context

Lagrangian becomes Poincaré-Cartan 1-form

$$\gamma = \mathbf{p} \cdot \,\mathrm{d}\mathbf{x} - H \,\mathrm{d}t$$

with $\mathbf{p} = m_s \mathbf{v} + e_s \mathbf{A}(t, \mathbf{x})$, $H = m_s v^2/2 + e_s \phi(t, \mathbf{x})$.

- ω = dγ is the Lagrange 2-form, which is non degenerate and so a symplectic form. Its components define the Lagrange tensor Ω.
- ► Then $J = \Omega^{-1}$ is the Poisson tensor which defines the Poisson bracket

$$\{F,G\} = \nabla F^T J \nabla G$$

 The equations of motion can then be expressed from the Poisson matrix and the hamiltonian

$$\frac{\mathrm{d}\mathbf{Z}}{\mathrm{d}t} = J\nabla H.$$

 Lagrangian contains all necessary information and this structure is preserved by change of coordintates.

Derivation of gyrokinetic particle Lagrangian

- Gyrokinetic particle Lagrangian obtained from Vlasov-Maxwell particle Lagrangian by performing a change of variables, such that lowest order terms independent of gyrophase.
- This is obtained systematically order by order by the Lie transform method (Dragt & Finn 1976, Cary 1981) on the Lagrangian

$$L_s(\mathbf{x},\mathbf{v},\dot{\mathbf{x}},t) = (m_s\mathbf{v} + e_s\mathbf{A})\cdot\dot{\mathbf{x}}^2 - (\frac{1}{2}m_s|\mathbf{v}|^2 + e_s\phi).$$

- Not a unique solution.
 - 1. v_{\parallel} formulation. Transform Lagrangian as is keeping fluctuation \bm{A} in symplectic form.
 - 2. p_{\parallel} formulation, $p_{\parallel} = v_{\parallel} + (e/m)A_{\parallel}$. Fluctuating A_{\parallel} in hamiltonian.
 - 3. u_{\parallel} formulation. Split fluctuating A_{\parallel} into two parts. One of them goes into Hamiltonian. Includes others as special case.
- ▶ Gyrokinetic codes choose between v_{||} (symplectic) and p_{||} (hamiltonian) formulation.
- Both involve severe numerical drawbacks.

- Physically the most natural
- Involves $\frac{\partial A_{\parallel}}{\partial t}$ term in particles' equations of motion.
- Straightforward explicit discretisation unstable.
- Similar problems occur in Vlasov-Darwin simulation.
- Momentum equation could in principle be used for stabilisation but not done in practice.

The p_{\parallel} formulation

- Classically used in gyrokinetic simulations
- Gives rise to the so-called cancellation problem in the parallel Ampere Law

$$-\nabla_{\perp}^2 A_{\parallel} + \left(\frac{\omega_{p,i}^2}{c^2} + \frac{\omega_{p,e}^2}{c^2}\right) A_{\parallel} = \mu_0 j_{\parallel}.$$

• Indeed changing variables $p_{\parallel} = v_{\parallel} + (e_s/m_s)A_{\parallel}$

$$j_{\parallel,s} = \int f_s(t,\mathbf{x},v_{\parallel})v_{\parallel} \,\mathrm{d}v_{\parallel} = \int f_s(t,\mathbf{x},p_{\parallel})p_{\parallel} \,\mathrm{d}p_{\parallel} - \frac{e_s}{m_s}A_{\parallel} \int f_s(t,\mathbf{x},p_{\parallel}) \,\mathrm{d}p_{\parallel}.$$

► Last term (linearized) leads to large skin term, which must be exactly compensated by the corresponding part of j_{||}: Numerically very challenging.

The mixed gyrokinetic particle Lagrangian

- Split $A_{\parallel} = A^s_{\parallel} + A^h_{\parallel}$. Define $u_{\parallel} = v_{\parallel} + (e/m)A^h_{\parallel}$
- A^s_{\parallel} is chosen such that $E_{\parallel} = -\partial_t A_{\parallel} \nabla_{\parallel} \phi = 0.$
- The gyrokinetic Lagrangian for a single particle always in the form

$$L = \mathbf{A}^* \cdot \dot{\mathbf{X}} + \mu \dot{\theta} - H$$

with
$$\mathbf{A}^* = \mathbf{A}_0 + \left((m_s/e_s)u_{\parallel} + \langle A^s_{\parallel} \rangle \right) \mathbf{b}, \quad \mathbf{b} = \mathbf{B}/B,$$

 $H = H_0 + H_1 + H_2, \quad H_0 = \frac{1}{2}m_s u_{\parallel}^2 + \mu B, \quad H_1 = \langle \phi - u_{\parallel} A^h_{\parallel} \rangle$

where

$$\langle \psi \rangle(\mathbf{x},\mu) \stackrel{\text{def}}{=} \frac{1}{2\pi} \oint \psi(\mathbf{x}+\rho) \,\mathrm{d}\alpha.$$

 Perpendicular component of fluctuating vector potential A neglected.

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

Action principle for the Vlasov-Maxwell equations

- Field theory is action principle from which Vlasov-Maxwell equations are derived.
- Action proposed by Low (1958) with a Lagrangian formulation for Vlasov, *i.e.* based on characteristics.
- Based on particle Lagrangian for species s, L_s .
- Such an action, splitting between particle and field Lagrangian, using standard non canonical coordinates, reads:

$$\begin{split} \mathcal{S} &= \sum_{\mathbf{s}} \int f_{\mathbf{s}}(\mathbf{z}_0, t_0) L_{\mathbf{s}}(\mathbf{X}(\mathbf{z}_0, t_0; t), \dot{\mathbf{X}}(\mathbf{z}_0, t_0; t), t) \, \mathrm{d}\mathbf{z}_0 \, \mathrm{d}t \\ &+ \frac{\epsilon_0}{2} \int |\nabla \phi + \frac{\partial \mathbf{A}}{\partial t}|^2 \, \mathrm{d}\mathbf{x} \, \mathrm{d}t - \frac{1}{2\mu_0} \int |\nabla \times \mathbf{A}|^2 \, \mathrm{d}\mathbf{x} \, \mathrm{d}t. \end{split}$$

Particle distribution functions f_s taken at initial time.

The electromagnetic gyrokinetic field theory

- ► Gyrokinetics is a low frequency approximation. Darwin approximation: ∂_tA removed from Lagrangian.
- Quasi-neutrality approximation: $|\nabla \phi|^2$ removed:

$$\mathcal{S} = \sum_{\mathrm{s}} \int f_{\mathrm{s}}(\mathbf{z}_0, t_0) (\mathbf{A}^* \cdot \dot{\mathbf{X}} - H) \, \mathrm{d}\mathbf{z}_0 - \frac{1}{2\mu_0} \int |\nabla \times (A_{\parallel} \mathbf{b})|^2 \, \mathrm{d}\mathbf{x}.$$

 Additional approximation made to avoid fully implicit formulation: Second order term in Lagrangian linearised (consistent with ordering) by replacing full f by background f_M

$$\begin{split} \mathcal{S} &= \sum_{\mathrm{s}} \int f_{s}(\mathbf{z}_{0}, t_{0}) (\mathbf{A}^{*} \cdot \dot{\mathbf{X}} - H_{0} - H_{1}) \, \mathrm{d}\mathbf{z}_{0} \\ &- \sum_{\mathrm{s}} \int f_{M,s}(\mathbf{z}_{0}) H_{2} \, \mathrm{d}\mathbf{z}_{0} - \frac{1}{2\mu_{0}} \int |\mathbf{b} \times \nabla A_{\parallel}|^{2} \, \mathrm{d}\mathbf{x}. \end{split}$$

Derivation of the gyrokinetic equations from the action principle

We denote by
$$\mathbf{B}^* = \nabla \times \mathbf{A}^*$$
 and $B^*_{\parallel} = \mathbf{B}^* \cdot \mathbf{b}$.

• Setting
$$\frac{\delta S}{\delta Z_i} = 0$$
, $i = 1, 2, 3, 4$ yields:

$$\mathbf{B}^* \times \dot{\mathbf{R}} = -\frac{m}{q} \dot{P}_{\parallel} \mathbf{b} - \frac{1}{q} \nabla (H_0 + H_1), \quad \mathbf{b} \cdot \dot{\mathbf{R}} = \frac{1}{m} \frac{\partial (H_0 + H_1)}{\partial p_{\parallel}}$$

Solving for R and P_{||} we get the equations of motion of the gyrocenters:

$$B_{\parallel}^*\dot{\mathbf{R}} = rac{1}{m}rac{\partial(\mathcal{H}_0+\mathcal{H}_1)}{\partial p_{\parallel}}\mathbf{B}^* - rac{1}{q}
abla(\mathcal{H}_0+\mathcal{H}_1) imes\mathbf{b}, \; B_{\parallel}^*\dot{P_{\parallel}} = -rac{1}{m}
abla(\mathcal{H}_0+\mathcal{H}_1)\cdot\mathbf{B}^*.$$

These are the characteristics of the gyrokinetic Vlasov equation

$$\frac{\partial f}{\partial t} + \dot{\mathbf{R}} \cdot \nabla f + \dot{P}_{\parallel} \frac{\partial f}{\partial p_{\parallel}} = 0.$$

IPP

Gyrokinetic Ampere and Poisson equations

 \blacktriangleright The gyrokinetic Poisson (or rather quasi-neutrality) equation is obtained by variations with respect to ϕ

$$\int \frac{e_i^2 \rho_i^2 n_{\mathbf{s},0}}{k_{\mathrm{B}} T_i} \nabla_{\perp} \phi \cdot \nabla \tilde{\phi} \, \mathrm{d} \mathbf{x} = \int q n \langle \tilde{\phi} \rangle \, \mathrm{d} \mathbf{x}, \quad \forall \tilde{\phi}$$

The gyrokinetic Ampère equation is obtained by variations with respect to A_{||}:

$$\begin{split} \int \nabla_{\perp} A_{\parallel} \cdot \nabla_{\perp} \tilde{A}^{h}_{\parallel} \, \mathrm{d}\mathbf{x} + \sum_{s} \int \frac{\mu_{0} q_{s}^{2} n_{s}}{m_{s}} \langle A^{h}_{\parallel} \rangle \langle \tilde{A}^{h}_{\parallel} \rangle \, \mathrm{d}\mathbf{x} \\ &= \mu_{0} \int j_{\parallel} \langle \tilde{A}^{h}_{\parallel} \rangle \, \mathrm{d}\mathbf{x}, \quad \forall \tilde{A}^{h}_{\parallel} \end{split}$$

• where $A_{\parallel} = A^s_{\parallel} + A^h_{\parallel}$ and A^s_{\parallel} is related to ϕ by the constraint

$$\frac{\partial A^s_{\parallel}}{\partial t} + \nabla \phi \cdot \mathbf{b} = 0.$$

Conserved quantities

- \blacktriangleright Symmetries of Lagrangian yield invariants using Noether's theorem
- Time translation: Conservation of energy:

$$\begin{split} \mathcal{E}(t) &= \sum_{s} \int \mathrm{d} W_0 \mathrm{d} V_0 f_{s,0}(\mathbf{z}_0) H_s - \int \mathrm{d} V \frac{e_i^2 \rho_i^2 n_{s,0}}{k_\mathrm{B} T_i} |\nabla \phi|^2 \\ &+ \frac{1}{2\mu_0} \int \mathrm{d} V |\nabla_{\perp} A_{\parallel}|^2. \end{split}$$

 Axisymmetry of background vector potential: Conservation of total canonical angular momentum:

$$\mathcal{P}_{\varphi} = \sum_{s} e_{s} \int \mathrm{d} W_{0} \mathrm{d} V_{0} f_{s,0}(\mathbf{z}_{0}) \mathbf{A}_{s,\varphi}^{\star}$$

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

How does the mixed formulation help?

• Evolution of u_{\parallel} : $\partial_t A^s_{\parallel}$ can be replaced by $-\nabla_{\parallel}\phi$ to get rid of v_{\parallel} formulation problem

$$\begin{split} \frac{\mathrm{d}u_{\parallel}}{\mathrm{d}t} &= \frac{e_{s}}{m_{s}} \left(\mathbf{b} \cdot \nabla \left[\langle \phi \rangle - u_{\parallel} \langle A^{h}_{\parallel} \rangle + \frac{e_{s}}{2m_{s}} \langle A^{h}_{\parallel} \rangle^{2} \right] + \frac{\partial \langle A^{s}_{\parallel} \rangle}{\partial t} \\ &+ \frac{1}{B^{*}_{\parallel}} \nabla \langle A^{s}_{\parallel} \rangle \cdot \mathbf{b} \times \nabla \left[\langle \phi \rangle - u_{\parallel} \langle A^{h}_{\parallel} \rangle + \frac{e_{s}}{2m_{s}} \langle A^{h}_{\parallel} \rangle^{2} \right] \right) \end{split}$$

The mixed Ampere equation: Cancellation problem mitigated if A^h_{||} remains small

$$-\nabla_{\perp}^{2}A_{\parallel} + \frac{\omega_{p,i}^{2} + \omega_{p,e}^{2}}{c^{2}} \langle A_{\parallel}^{h} \rangle = \mu_{0}j_{\parallel}$$

Adding a pullback at each time step

- Mixed formulation very effective for MHD modes, where $E_{\parallel} = 0$ and $A_{\parallel,h}$ stays small for all time.
- ► It does not help so much when A_{||,h} grows with time. What can we do?
- Idea is to perform change of variables (pullback) at each time step to go back to the v_{||} formulation and evolve in the mixed formulation from there:

$$v_{\parallel} = u_{\parallel} - rac{e_s}{m_s} \langle A^h_{\parallel} \rangle, \ f(v_{\parallel}) = f(u_{\parallel}), \ A_{\parallel} = A^h_{\parallel} + A^s_{\parallel}, \ A^h_{\parallel} = 0.$$

- Now A^h_{||} evolves from 0 at each time step and always stays small, effectively removing the cancellation problem in all cases.
- ► This can also be seen as an integrating factor method (appropriate change of variable) to solve the v_{||} gyrokinetic formulation. In this interpretation, mixed gyrokinetic theory not needed.

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

Discretisation of the action

- Our action principles rely on a Lagrangian (as opposed to Eulerian) formulation of the Vlasov equation: the functionals on which our action depends are the characteristics of the Vlasov equations X and V in addition to the scalar and vector potentials \$\phi\$ and A.
- A natural discretisation relies on:
 - A Monte-Carlo discretisation of the phase space at the initial time: select randomly some initial positions of the particles.
 - ► Approximate the continuous function spaces for ϕ and **A** by discrete subspaces.
 - Yields a discrete action where a finite (large) number of scalars are varied: the particle phase space positions and coefficients in Finite Element basis.
- When performing the variations, we get the classical Particle In Cell Finite Element Method (PIC-FEM).

PIC Finite Element approximation of the Action

► FE discretisation with B-spline basis functions:

$$\phi_h = \sum \phi_i \Lambda_i, \ A_{\parallel} = \sum a_i \Lambda_i.$$

- Particle discretisation of $f \approx \sum_k w_k \delta(x x_k(t)) \delta(v v_k(t))$
- Vlasov-Maxwell action becomes:

$$\begin{split} \mathcal{S}_{N,h} &= \sum_{k=1}^{N} w_k L_s(\mathbf{Z}(\mathbf{z}_{k,0},t_0;t),\dot{\mathbf{Z}}(\mathbf{z}_{k,0},t_0;t),t) \\ &\quad -\frac{1}{2} \int |\sum_{i=1}^{N_g} a_i(t) \mathbf{b} \times \nabla \Lambda_i^1(\mathbf{x})|^2 \, \mathrm{d}\mathbf{x}. \end{split}$$

► Z(z_{k,0}, t₀; t) will be traditionally denoted by z_k(t) is the phase space position at time t of the particle that was at z_{k,0} at time t₀.

IPP

Simulation of a TAE in a circular tokamak

Convergence plots with respect to number of electron markers

- Variational FE-PIC codes along with control variates for noise reduction at the base of success of PIC simulations of Tokamak turbulence with ORB5 family of codes.
- Pullback idea provides very simple trick to handle cancellation problem.
- Exact conservation properties very useful for code verification
- Ongoing work (with K. Kormann, M. Kraus, P.J. Morrison) highlights finite dimensional Poisson structure for FE-PIC codes