A mixed variable gyrokinetic model for electromagnetic gyrokinetic simulations

Eric Sonnendrücker
Max-Planck Institute for Plasma Physics and
TU Munich

with: Roman Hatzky, Ralf Kleiber, Axel Könies, Alexey Mishchenko
Vlasovia 2016, 1 June 2016

Outline

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

From the continuous to the discrete action: PIC-FEM

Outline

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

From the continuous to the discrete action: PIC-FEM

Motivation

- Solve Alfven eigenmode problems with gyrokinetic PIC codes
- Family of PIC codes started at EPFL
- ORB5 (EPFL), originally electrostatic Tokamak code
- NEMORB (IPP Garching), electromagnetic version
- EUTERPE (IPP Greifswald), electromagnetic stellarator code
- GYGLES (IPP Garching and Greifswald): simplified 2D version

NEMORB: AUG 26754
(Picture: A. Bottino)

- Cancellation problem can be handled with adaptive control variate and meticulous numerics (Hatzky et al. JCP 07)
- Unstable grid modes requiring very low time step

Noise reduction is essential

- PIC is a Monte Carlo approximation. Markers realisations of a stochastic process with probability density f.
- The Monte Carlo error for a simulation based on a random variable X is given by $\sqrt{\mathbb{V}(X) / N}$.
- The idea of variance reduction techniques that are essential for efficient Monte Carlo simulations is to find a random variable \tilde{X} so that

$$
\mathbb{E}(\tilde{X})=\mathbb{E}(X) \quad \text { and } \mathbb{V}(\tilde{X}) \ll \mathbb{V}(X)
$$

- Two such techniques are efficiently used in PIC simulations

1. Importance sampling: weighted PIC
2. Control variates: δf PIC

- Both have been historically developed for other purposes. First MC interpretation by Aydemir 1994. See also Hatzky.
- Both techniques are still not mainstream in PIC simulations because of weight mixing and weight spreading issues.

Importance sampling to the PIC method

- Instead of initialising the particle positions according to initial particle distribution f_{0}, use adequately chosen marker distribution g_{0}.
- For each marker z_{k} weight is defined by $w_{k}=f_{0}\left(z_{k}\right) / g_{0}\left(z_{k}\right)$.
- Let marker density evolve like particle density: g is solution of the same Fokker-Planck (or Vlasov) equation as f, only with different initial condition.
- As f and g are conserved along the same characteristics w_{k} is constant in time:

$$
w_{k}=\frac{f\left(t, \mathbf{z}_{k}(t)\right)}{g\left(t, \mathbf{z}_{k}(t)\right)}=\frac{f_{0}\left(\mathbf{z}_{k}(0)\right)}{g_{0}\left(\mathbf{z}_{k}(0)\right)} .
$$

- Good way to initialise marker dependent on physics problem.

Control variates

- Guiding idea: compute as little as possible with noisy particle data.
- In gyrokinetic PIC: use analytical background f^{0} to compute bulk of charge an current densities, e.g.

$$
\rho_{s}=e_{s}\left(\int f_{s}^{0} \mathrm{~d} v+\int\left(f_{s}-f_{s}^{0}\right) \mathrm{d} v\right)
$$

- Small modification in existing PIC code. Really full f PIC code carrying in addition time dependent weights for noise reduced computation of source terms for field equations.
- Initialisation: Importance weights for $\delta f=f-f^{0}$ defined by the random variable

$$
W^{0}=\frac{f_{0}\left(\mathbf{Z}^{0}\right)-f^{0}\left(0, \mathbf{Z}^{0}\right)}{g_{0}\left(\mathbf{Z}^{0}\right)}=W-\frac{f^{0}\left(0, \mathbf{Z}^{0}\right)}{g_{0}\left(\mathbf{Z}^{0}\right)}
$$

- Update: (No linearisation involved)

$$
W^{n}=\frac{f\left(t_{n}, \mathbf{Z}^{n}\right)-f^{0}\left(t_{n}, \mathbf{Z}^{n}\right)}{g\left(t_{n}, \mathbf{Z}^{n}\right)}=\frac{f_{0}\left(\mathbf{Z}^{0}\right)-f^{0}\left(t_{n}, \mathbf{Z}^{n}\right)}{g_{0}\left(\mathbf{Z}^{0}\right)}=W-\frac{f^{0}\left(t_{n}, \mathbf{Z}^{n}\right)}{g_{0}\left(\mathbf{Z}^{0}\right)} .
$$

Outline

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

From the continuous to the discrete action: PIC-FEM

Reduction of 6D Vlasov-Maxwell for efficient simu-

- Posed in 6D phase space! Dimension reduction if possible would help.
- Large magnetic field imposes very small time step to resolve the rotation of particles along field lines.

- Physics of interest is low frequency. Remove light waves: Darwin instead of Maxwell.
- Debye length small compared to ion Larmor radius. Quasi-neutrality assumption $n_{e}=n_{i}$ needs to be imposed instead of Poisson equation for electric field.

Towards a reduced model

- Scale separation: fast motion around magnetic field lines can be averaged out.
- Idea: separate motion of the guiding centre from rotation by a change of coordinates.
- For constant magnetic field can be done by change of coordinates: $\mathbf{X}=\mathbf{x}-\rho_{L}$ guiding centre + kind of cylindrical coordinates in \mathbf{v} : $v_{\|}, \mu=\frac{1}{2} m v_{\perp}^{2} / \omega_{c}, \theta$.
- Mixes position and velocity variables.

- Perturbative model for slowly varying magnetic field.
- Several small parameters
- gyroperiod, Debye length
- Magnetic field in tokamak varies slowly: $\epsilon_{B}=|\nabla B| /|B|$
- Time dependent fluctuating fields are small.

Geometric asymptotic reduction

- Long time magnetic confinement of charged particles depends on existence of first adiabatic invariant (Northrop 1963): $\mu=\frac{1}{2} m v_{\perp}^{2} / \omega_{c}$.
- Geometric reduction based on making this adiabatic invariant an exact invariant.
- Two steps procedure:
- Start from Vlasov-Maxwell particle Lagrangian and reduce it using Lie transforms such that it is independent of gyromotion up to second order
- Plug particle Lagrangian into Vlasov-Maxwell field theoretic action and perform further reduction.
- End product is gyrokinetic field theory embodied in Lagrangian. Symmetries of Lagrangian yield exact conservation laws thanks to Noether Theorem.

Motion of a particle in an electromagnetic field

- Consider given electromagnetic field defined by scalar potential ϕ and vector potential A such that

$$
\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t}-\nabla \phi, \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

- The non relativistic equations of motion of a particle in this electromagnetic field is obtained from Lagrangian (here phase space Lagrangian $\mathbf{p} \cdot \dot{\mathbf{q}}-H$ in non canonical variables for later use)

$$
L_{s}(\mathbf{x}, \mathbf{v}, \dot{\mathbf{x}}, t)=\left(m_{s} \mathbf{v}+e_{s} \mathbf{A}\right) \cdot \dot{\mathbf{x}}^{2}-\left(\frac{1}{2} m_{s} v^{2}+e_{s} \phi\right) .
$$

where $\mathbf{p}=m_{s} \mathbf{v}+e_{s} \mathbf{A}(t, \mathbf{x}), H=m_{s} v^{2} / 2+e_{s} \phi(t, \mathbf{x})$ are canonical momentum and hamiltonian.

Abstract geometric context

- Lagrangian becomes Poincaré-Cartan 1-form

$$
\gamma=\mathbf{p} \cdot \mathrm{d} \mathbf{x}-H \mathrm{~d} t
$$

with $\mathbf{p}=m_{s} \mathbf{v}+e_{s} \mathbf{A}(t, \mathbf{x}), H=m_{s} v^{2} / 2+e_{s} \phi(t, \mathbf{x})$.

- $\omega=\mathrm{d} \gamma$ is the Lagrange 2 -form, which is non degenerate and so a symplectic form. Its components define the the Lagrange tensor Ω.
- Then $J=\Omega^{-1}$ is the Poisson tensor which defines the Poisson bracket

$$
\{F, G\}=\nabla F^{\top} J \nabla G
$$

- The equations of motion can then be expressed from the Poisson matrix and the hamiltonian

$$
\frac{\mathrm{d} \mathbf{Z}}{\mathrm{~d} t}=J \nabla H
$$

- Lagrangian contains all necessary information and this structure is preserved by change of coordintates.

Derivation of gyrokinetic particle Lagrangian

- Gyrokinetic particle Lagrangian obtained from Vlasov-Maxwell particle Lagrangian by performing a change of variables, such that lowest order terms independent of gyrophase.
- This is obtained systematically order by order by the Lie transform method (Dragt \& Finn 1976, Cary 1981) on the Lagrangian

$$
L_{s}(\mathbf{x}, \mathbf{v}, \dot{\mathbf{x}}, t)=\left(m_{s} \mathbf{v}+e_{s} \mathbf{A}\right) \cdot \dot{\mathbf{x}}^{2}-\left(\frac{1}{2} m_{s}|\mathbf{v}|^{2}+e_{s} \phi\right)
$$

- Not a unique solution.

1. $v_{\|}$formulation. Transform Lagrangian as is keeping fluctuation \mathbf{A} in symplectic form.
2. $p_{\|}$formulation, $p_{\|}=v_{\|}+(e / m) A_{\|}$. Fluctuating $A_{\|}$in hamiltonian.
3. $u_{\|}$formulation. Split fluctuating $A_{\|}$into two parts. One of them goes into Hamiltonian. Includes others as special case.

- Gyrokinetic codes choose between $v_{\|}$(symplectic) and $p_{\|}$ (hamiltonian) formulation.
- Both involve severe numerical drawbacks.

The $v_{\|}$formulation

- Physically the most natural
- Involves $\frac{\partial A_{\|}}{\partial t}$ term in particles' equations of motion.
- Straightforward explicit discretisation unstable.
- Similar problems occur in Vlasov-Darwin simulation.
- Momentum equation could in principle be used for stabilisation but not done in practice.

The $p_{\|}$formulation

- Classically used in gyrokinetic simulations
- Gives rise to the so-called cancellation problem in the parallel Ampere Law

$$
-\nabla_{\perp}^{2} A_{\|}+\left(\frac{\omega_{p, i}^{2}}{c^{2}}+\frac{\omega_{p, e}^{2}}{c^{2}}\right) A_{\|}=\mu_{0} j_{\|}
$$

- Indeed changing variables $p_{\|}=v_{\|}+\left(e_{s} / m_{s}\right) A_{\|}$

$$
j_{\|, s}=\int f_{s}\left(t, \mathbf{x}, v_{\|}\right) v_{\|} \mathrm{d} v_{\|}=\int f_{s}\left(t, \mathbf{x}, p_{\|}\right) p_{\|} \mathrm{d} p_{\|}-\frac{e_{s}}{m_{s}} A_{\|} \int f_{s}\left(t, \mathbf{x}, p_{\|}\right) \mathrm{d} p_{\|}
$$

- Last term (linearized) leads to large skin term, which must be exactly compensated by the corresponding part of $j_{\|}$: Numerically very challenging.

The mixed gyrokinetic particle Lagrangian

- Split $A_{\|}=A_{\|}^{s}+A_{\|}^{h}$. Define $u_{\|}=v_{\|}+(e / m) A_{\|}^{h}$
- $A_{\|}^{s}$ is chosen such that $E_{\|}=-\partial_{t} A_{\|}-\nabla_{\|} \phi=0$.
- The gyrokinetic Lagrangian for a single particle always in the form

$$
L=\mathbf{A}^{*} \cdot \dot{\mathbf{X}}+\mu \dot{\theta}-H
$$

$$
\begin{aligned}
& \text { with } \mathbf{A}^{*}=\mathbf{A}_{0}+\left(\left(m_{s} / e_{s}\right) u_{\|}+\left\langle A_{\|}^{s}\right\rangle\right) \mathbf{b}, \quad \mathbf{b}=\mathbf{B} / B \\
& \qquad H=H_{0}+H_{1}+H_{2}, \quad H_{0}=\frac{1}{2} m_{s} u_{\|}^{2}+\mu B, \quad H_{1}=\left\langle\phi-u_{\|} A_{\|}^{h}\right\rangle
\end{aligned}
$$

where

$$
\langle\psi\rangle(\mathbf{x}, \mu) \stackrel{\text { def }}{=} \frac{1}{2 \pi} \oint \psi(\mathbf{x}+\rho) \mathrm{d} \alpha .
$$

- Perpendicular component of fluctuating vector potential A neglected.

Outline

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

From the continuous to the discrete action: PIC-FEM

Action principle for the Vlasov-Maxwell equations

- Field theory is action principle from which Vlasov-Maxwell equations are derived.
- Action proposed by Low (1958) with a Lagrangian formulation for Vlasov, i.e. based on characteristics.
- Based on particle Lagrangian for species s, L_{s}.
- Such an action, splitting between particle and field Lagrangian, using standard non canonical coordinates, reads:

$$
\begin{aligned}
\mathcal{S}=\sum_{\mathrm{s}} \int & f_{s}\left(\mathbf{z}_{0}, t_{0}\right) L_{s}\left(\mathbf{X}\left(\mathbf{z}_{0}, t_{0} ; t\right), \dot{\mathbf{X}}\left(\mathbf{z}_{0}, t_{0} ; t\right), t\right) \mathrm{d} \mathbf{z}_{0} \mathrm{~d} t \\
& +\frac{\epsilon_{0}}{2} \int\left|\nabla \phi+\frac{\partial \mathbf{A}}{\partial t}\right|^{2} \mathrm{~d} \mathbf{x} \mathrm{~d} t-\frac{1}{2 \mu_{0}} \int|\nabla \times \mathbf{A}|^{2} \mathrm{~d} \mathbf{x} \mathrm{~d} t
\end{aligned}
$$

Particle distribution functions f_{s} taken at initial time.

The electromagnetic gyrokinetic field theory

- Gyrokinetics is a low frequency approximation. Darwin approximation: $\partial_{t} \mathbf{A}$ removed from Lagrangian.
- Quasi-neutrality approximation: $|\nabla \phi|^{2}$ removed:

$$
\mathcal{S}=\sum_{\mathrm{s}} \int f_{s}\left(\mathbf{z}_{0}, t_{0}\right)\left(\mathbf{A}^{*} \cdot \dot{\mathbf{X}}-H\right) \mathrm{d} \mathbf{z}_{0}-\frac{1}{2 \mu_{0}} \int\left|\nabla \times\left(A_{\|} \mathbf{b}\right)\right|^{2} \mathrm{~d} \mathbf{x} .
$$

- Additional approximation made to avoid fully implicit formulation: Second order term in Lagrangian linearised (consistent with ordering) by replacing full f by background f_{M}

$$
\begin{aligned}
& \mathcal{S}=\sum_{\mathrm{s}} \int f_{s}\left(\mathbf{z}_{0}, t_{0}\right)\left(\mathbf{A}^{*} \cdot \dot{\mathbf{X}}-H_{0}-H_{1}\right) \mathrm{d} \mathbf{z}_{0} \\
&-\sum_{\mathrm{s}} \int f_{M, s}\left(\mathbf{z}_{0}\right) H_{2} \mathrm{~d} \mathbf{z}_{0}-\frac{1}{2 \mu_{0}} \int\left|\mathbf{b} \times \nabla A_{\|}\right|^{2} \mathrm{~d} \mathbf{x}
\end{aligned}
$$

Derivation of the gyrokinetic equations from the action principle

We denote by $\mathbf{B}^{*}=\nabla \times \mathbf{A}^{*}$ and $B_{\|}^{*}=\mathbf{B}^{*} \cdot \mathbf{b}$.

- Setting $\frac{\delta S}{\delta Z_{i}}=0, i=1,2,3,4$ yields:

$$
\mathbf{B}^{*} \times \dot{\mathbf{R}}=-\frac{m}{q} \dot{P}_{\|} \mathbf{b}-\frac{1}{q} \nabla\left(H_{0}+H_{1}\right), \quad \mathbf{b} \cdot \dot{\mathbf{R}}=\frac{1}{m} \frac{\partial\left(H_{0}+H_{1}\right)}{\partial p_{\|}} .
$$

- Solving for $\dot{\mathbf{R}}$ and $\dot{P}_{\|}$we get the equations of motion of the gyrocenters:

$$
B_{\|}^{*} \dot{\mathbf{R}}=\frac{1}{m} \frac{\partial\left(H_{0}+H_{1}\right)}{\partial p_{\|}} \mathbf{B}^{*}-\frac{1}{q} \nabla\left(H_{0}+H_{1}\right) \times \mathbf{b}, B_{\|}^{*} \dot{P}_{\|}=-\frac{1}{m} \nabla\left(H_{0}+H_{1}\right) \cdot \mathbf{B}^{*} .
$$

- These are the characteristics of the gyrokinetic Vlasov equation

$$
\frac{\partial f}{\partial t}+\dot{\mathbf{R}} \cdot \nabla f+\dot{P}_{\|} \frac{\partial f}{\partial p_{\|}}=0
$$

Gyrokinetic Ampere and Poisson equations

- The gyrokinetic Poisson (or rather quasi-neutrality) equation is obtained by variations with respect to ϕ

$$
\int \frac{e_{i}^{2} \rho_{i}^{2} n_{s, 0}}{k_{\mathrm{B}} T_{i}} \nabla_{\perp} \phi \cdot \nabla \tilde{\phi} \mathrm{d} \mathbf{x}=\int q n\langle\tilde{\phi}\rangle \mathrm{d} \mathbf{x}, \quad \forall \tilde{\phi}
$$

- The gyrokinetic Ampère equation is obtained by variations with respect to $A_{\|}$:

$$
\begin{aligned}
\int \nabla_{\perp} A_{\|} \cdot \nabla_{\perp} \tilde{A}_{\|}^{h} \mathrm{~d} \mathbf{x}+\sum_{s} \int \frac{\mu_{0} q_{s}^{2} n_{s}}{m_{s}}\left\langle A_{\|}^{h}\right\rangle\left\langle\tilde{A}_{\|}^{h}\right\rangle \mathrm{d} \mathbf{x} & \\
& =\mu_{0} \int \dot{j}_{\|}\left\langle\tilde{A}_{\|}^{h}\right\rangle \mathrm{d} \mathbf{x}, \quad \forall \tilde{A}_{\|}^{h}
\end{aligned}
$$

- where $A_{\|}=A_{\|}^{s}+A_{\|}^{h}$ and $A_{\|}^{s}$ is related to ϕ by the constraint

$$
\frac{\partial A_{\|}^{s}}{\partial t}+\nabla \phi \cdot \mathbf{b}=0
$$

Conserved quantities

- Symmetries of Lagrangian yield invariants using Noether's theorem
- Time translation: Conservation of energy:

$$
\begin{aligned}
\mathcal{E}(t)=\sum_{s} \int \mathrm{~d} W_{0} \mathrm{~d} V_{0} f_{s, 0}\left(\mathbf{z}_{0}\right) H_{s}-\int \mathrm{d} V & \frac{e_{i}^{2} \rho_{i}^{2} n_{s, 0}}{k_{\mathrm{B}} T_{i}}|\nabla \phi|^{2} \\
& +\frac{1}{2 \mu_{0}} \int \mathrm{~d} V\left|\nabla_{\perp} A_{\|}\right|^{2} .
\end{aligned}
$$

- Axisymmetry of background vector potential:

Conservation of total canonical angular momentum:

$$
\mathcal{P}_{\varphi}=\sum_{s} e_{s} \int \mathrm{~d} W_{0} \mathrm{~d} V_{0} f_{s, 0}\left(\mathbf{z}_{0}\right) \mathbf{A}_{s, \varphi}^{\star}
$$

Outline

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

From the continuous to the discrete action: PIC-FEM

How does the mixed formulation help?

- Evolution of $u_{\|}: \partial_{t} A_{\|}^{S}$ can be replaced by $-\nabla_{\|} \phi$ to get rid of $v_{\|}$ formulation problem

$$
\begin{aligned}
\frac{\mathrm{d} u_{\|}}{\mathrm{d} t}=\frac{e_{s}}{m_{s}} & \left(\mathbf{b} \cdot \nabla\left[\langle\phi\rangle-u_{\|}\left\langle A_{\|}^{h}\right\rangle+\frac{e_{s}}{2 m_{s}}\left\langle A_{\|}^{h}\right\rangle^{2}\right]+\frac{\partial\left\langle A_{\|}^{s}\right\rangle}{\partial t}\right. \\
& \left.+\frac{1}{B_{\|}^{*}} \nabla\left\langle A_{\|}^{s}\right\rangle \cdot \mathbf{b} \times \nabla\left[\langle\phi\rangle-u_{\|}\left\langle A_{\|}^{h}\right\rangle+\frac{e_{s}}{2 m_{s}}\left\langle A_{\|}^{h}\right\rangle^{2}\right]\right)
\end{aligned}
$$

- The mixed Ampere equation: Cancellation problem mitigated if $A_{\|}^{h}$ remains small

$$
-\nabla_{\perp}^{2} A_{\|}+\frac{\omega_{p, i}^{2}+\omega_{p, e}^{2}}{c^{2}}\left\langle A_{\|}^{h}\right\rangle=\mu_{0} j_{\|} .
$$

Adding a pullback at each time step

- Mixed formulation very effective for MHD modes, where $E_{\|}=0$ and $A_{\|, h}$ stays small for all time.
- It does not help so much when $A_{\|, h}$ grows with time. What can we do?
- Idea is to perform change of variables (pullback) at each time step to go back to the $v_{\|}$formulation and evolve in the mixed formulation from there:

$$
v_{\|}=u_{\|}-\frac{e_{s}}{m_{s}}\left\langle A_{\|}^{h}\right\rangle, \quad f\left(v_{\|}\right)=f\left(u_{\|}\right), \quad A_{\|}=A_{\|}^{h}+A_{\|}^{s}, \quad A_{\|}^{h}=0 .
$$

- Now $A_{\|}^{h}$ evolves from 0 at each time step and always stays small, effectively removing the cancellation problem in all cases.
- This can also be seen as an integrating factor method (appropriate change of variable) to solve the $v_{\|}$gyrokinetic formulation. In this interpretation, mixed gyrokinetic theory not needed.

Outline

Gyrokinetic Finite Element PIC codes

Gyrokinetic modelling

Gyrokinetic field theories

Avoiding the cancellation problem with the mixed formulation

From the continuous to the discrete action: PIC-FEM

Discretisation of the action

- Our action principles rely on a Lagrangian (as opposed to Eulerian) formulation of the Vlasov equation: the functionals on which our action depends are the characteristics of the Vlasov equations \mathbf{X} and \mathbf{V} in addition to the scalar and vector potentials ϕ and \mathbf{A}.
- A natural discretisation relies on:
- A Monte-Carlo discretisation of the phase space at the initial time: select randomly some initial positions of the particles.
- Approximate the continuous function spaces for ϕ and \mathbf{A} by discrete subspaces.
- Yields a discrete action where a finite (large) number of scalars are varied: the particle phase space positions and coefficients in Finite Element basis.
- When performing the variations, we get the classical Particle In Cell Finite Element Method (PIC-FEM).

PIC Finite Element approximation of the Action

- FE discretisation with B-spline basis functions:

$$
\phi_{h}=\sum \phi_{i} \Lambda_{i}, \quad A_{\|}=\sum a_{i} \Lambda_{i} .
$$

- Particle discretisation of $f \approx \sum_{k} w_{k} \delta\left(x-x_{k}(t)\right) \delta\left(v-v_{k}(t)\right)$
- Vlasov-Maxwell action becomes:

$$
\begin{aligned}
\mathcal{S}_{N, h}=\sum_{k=1}^{N} w_{k} L_{s}\left(\mathbf{Z}\left(\mathbf{z}_{k, 0}, t_{0} ; t\right),\right. & \left.\dot{\mathbf{Z}}\left(\mathbf{z}_{k, 0}, t_{0} ; t\right), t\right) \\
& -\frac{1}{2} \int\left|\sum_{i=1}^{N_{g}} a_{i}(t) \mathbf{b} \times \nabla \Lambda_{i}^{1}(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}
\end{aligned}
$$

- $\mathbf{Z}\left(\mathbf{z}_{k, 0}, t_{0} ; t\right)$ will be traditionally denoted by $\mathbf{z}_{k}(t)$ is the phase space position at time t of the particle that was at $\mathbf{z}_{k, 0}$ at time t_{0}.

Simulation of a TAE in a circular tokamak

- Convergence plots with respect to number of electron markers

Blue: old method
Red: new method

- Convergence plots with respect to time step

Conclusion and related work

- Variational FE-PIC codes along with control variates for noise reduction at the base of success of PIC simulations of Tokamak turbulence with ORB5 family of codes.
- Pullback idea provides very simple trick to handle cancellation problem.
- Exact conservation properties very useful for code verification
- Ongoing work (with K. Kormann, M. Kraus, P.J. Morrison) highlights finite dimensional Poisson structure for FE-PIC codes

