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Motivation

I Solve Alfven eigenmode problems with gyrokinetic PIC codes
I Family of PIC codes started at EPFL

I ORB5 (EPFL), originally electrostatic Tokamak code
I NEMORB (IPP Garching), electromagnetic version
I EUTERPE (IPP Greifswald), electromagnetic stellarator code
I GYGLES (IPP Garching and Greifswald): simplified 2D version

A. Bottino, NumKin 2013, 5/09/2013 

Turbulence, perpendicular vs. parallel  

(Picture: A. Bottino)

I Cancellation problem can be handled with adaptive control variate
and meticulous numerics (Hatzky et al. JCP 07)

I Unstable grid modes requiring very low time step
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Noise reduction is essential

I PIC is a Monte Carlo approximation. Markers realisations of a
stochastic process with probability density f .

I The Monte Carlo error for a simulation based on a random variable
X is given by

√
V(X )/N.

I The idea of variance reduction techniques that are essential for
efficient Monte Carlo simulations is to find a random variable X̃ so
that

E(X̃ ) = E(X ) and V(X̃ )� V(X ).

I Two such techniques are efficiently used in PIC simulations
1. Importance sampling: weighted PIC
2. Control variates: δf PIC

I Both have been historically developed for other purposes. First MC
interpretation by Aydemir 1994. See also Hatzky.

I Both techniques are still not mainstream in PIC simulations because
of weight mixing and weight spreading issues.
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Importance sampling to the PIC method

I Instead of initialising the particle positions according to initial
particle distribution f0, use adequately chosen marker distribution g0.

I For each marker zk weight is defined by wk = f0(zk)/g0(zk).

I Let marker density evolve like particle density: g is solution of the
same Fokker-Planck (or Vlasov) equation as f , only with different
initial condition.

I As f and g are conserved along the same characteristics
wk is constant in time:

wk =
f (t, zk(t))

g(t, zk(t))
=

f0(zk(0))

g0(zk(0))
.

I Good way to initialise marker dependent on physics problem.
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Control variates

I Guiding idea: compute as little as possible with noisy particle data.
I In gyrokinetic PIC: use analytical background f 0 to compute bulk of

charge an current densities, e.g.

ρs = es(

∫
f 0s dv +

∫
(fs − f 0s ) dv).

I Small modification in existing PIC code. Really full f PIC code
carrying in addition time dependent weights for noise reduced
computation of source terms for field equations.

I Initialisation: Importance weights for δf = f − f 0 defined by the
random variable

W 0 =
f0(Z0)− f 0(0,Z0)

g0(Z0)
= W − f 0(0,Z0)

g0(Z0)
.

I Update: (No linearisation involved)

W n =
f (tn,Zn)− f 0(tn,Zn)

g(tn,Zn)
=

f0(Z0)− f 0(tn,Zn)

g0(Z0)
= W− f 0(tn,Zn)

g0(Z0)
.
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Reduction of 6D Vlasov-Maxwell for efficient simu-
lation

I Posed in 6D phase space! Dimension reduction if possible would
help.

I Large magnetic field imposes very small time step to resolve the
rotation of particles along field lines.

I Physics of interest is low frequency. Remove light waves: Darwin
instead of Maxwell.

I Debye length small compared to ion Larmor radius. Quasi-neutrality
assumption ne = ni needs to be imposed instead of Poisson
equation for electric field.
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Towards a reduced model

I Scale separation: fast motion around magnetic field lines can be
averaged out.

I Idea: separate motion of the guiding centre from rotation by a
change of coordinates.

I For constant magnetic field can be done by change of
coordinates: X = x− ρL guiding centre + kind of
cylindrical coordinates in v: v‖, µ = 1

2mv2
⊥/ωc , θ.

I Mixes position and velocity variables.

I Perturbative model for slowly varying magnetic field.
I Several small parameters

I gyroperiod, Debye length
I Magnetic field in tokamak varies slowly: εB = |∇B|/|B|
I Time dependent fluctuating fields are small.
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Geometric asymptotic reduction

I Long time magnetic confinement of charged particles depends on
existence of first adiabatic invariant (Northrop 1963):
µ = 1

2mv2⊥/ωc .

I Geometric reduction based on making this adiabatic invariant an
exact invariant.

I Two steps procedure:
I Start from Vlasov-Maxwell particle Lagrangian and reduce it using Lie

transforms such that it is independent of gyromotion up to second
order

I Plug particle Lagrangian into Vlasov-Maxwell field theoretic action
and perform further reduction.

I End product is gyrokinetic field theory embodied in Lagrangian.
Symmetries of Lagrangian yield exact conservation laws thanks to
Noether Theorem.
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Motion of a particle in an electromagnetic field

I Consider given electromagnetic field defined by scalar potential φ
and vector potential A such that

E = −∂A
∂t
−∇φ, B = ∇× A.

I The non relativistic equations of motion of a particle in this
electromagnetic field is obtained from Lagrangian (here phase space
Lagrangian p · q̇− H in non canonical variables for later use)

Ls(x, v, ẋ, t) = (msv + esA) · ẋ2 − (
1

2
msv

2 + esφ).

where p = msv + esA(t, x), H = msv
2/2 + esφ(t, x) are canonical

momentum and hamiltonian.
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Abstract geometric context

I Lagrangian becomes Poincaré-Cartan 1-form

γ = p · dx− H dt

with p = msv + esA(t, x), H = msv
2/2 + esφ(t, x).

I ω = dγ is the Lagrange 2-form, which is non degenerate and so a
symplectic form. Its components define the the Lagrange tensor Ω.

I Then J = Ω−1 is the Poisson tensor which defines the Poisson
bracket

{F ,G} = ∇FT J∇G
I The equations of motion can then be expressed from the Poisson

matrix and the hamiltonian

dZ

dt
= J∇H.

I Lagrangian contains all necessary information and this structure is
preserved by change of coordintates.
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Derivation of gyrokinetic particle Lagrangian

I Gyrokinetic particle Lagrangian obtained from Vlasov-Maxwell
particle Lagrangian by performing a change of variables, such that
lowest order terms independent of gyrophase.

I This is obtained systematically order by order by the Lie transform
method (Dragt & Finn 1976, Cary 1981) on the Lagrangian

Ls(x, v, ẋ, t) = (msv + esA) · ẋ2 − (
1

2
ms |v|2 + esφ).

I Not a unique solution.
1. v‖ formulation. Transform Lagrangian as is keeping fluctuation A in

symplectic form.
2. p‖ formulation, p‖ = v‖ + (e/m)A‖. Fluctuating A‖ in hamiltonian.
3. u‖ formulation. Split fluctuating A‖ into two parts. One of them goes

into Hamiltonian. Includes others as special case.

I Gyrokinetic codes choose between v‖ (symplectic) and p‖
(hamiltonian) formulation.

I Both involve severe numerical drawbacks.
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The v‖ formulation

I Physically the most natural

I Involves
∂A‖
∂t term in particles’ equations of motion.

I Straightforward explicit discretisation unstable.

I Similar problems occur in Vlasov-Darwin simulation.

I Momentum equation could in principle be used for stabilisation but
not done in practice.
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The p‖ formulation

I Classically used in gyrokinetic simulations

I Gives rise to the so-called cancellation problem in the parallel
Ampere Law

−∇2
⊥A‖ +

(
ω2
p,i

c2
+
ω2
p,e

c2

)
A‖ = µ0j‖.

I Indeed changing variables p‖ = v‖ + (es/ms)A‖

j‖,s =

∫
fs(t, x, v‖)v‖ dv‖ =

∫
fs(t, x, p‖)p‖ dp‖−

es
ms

A‖

∫
fs(t, x, p‖) dp‖.

I Last term (linearized) leads to large skin term, which must be
exactly compensated by the corresponding part of j‖: Numerically
very challenging.
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The mixed gyrokinetic particle Lagrangian

I Split A‖ = As
‖ + Ah

‖. Define u‖ = v‖ + (e/m)Ah
‖

I As
‖ is chosen such that E‖ = −∂tA‖ −∇‖φ = 0.

I The gyrokinetic Lagrangian for a single particle always in the form

L = A∗ · Ẋ + µθ̇ − H

with A∗ = A0 +
(

(ms/es)u‖ + 〈As
‖〉
)
b, b = B/B,

H = H0 + H1 + H2, H0 =
1

2
msu

2
‖ + µB, H1 = 〈φ− u‖A

h
‖〉

where

〈ψ〉(x, µ)
def
=

1

2π

∮
ψ(x + ρ) dα.

I Perpendicular component of fluctuating vector potential A
neglected.
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Action principle for the Vlasov-Maxwell equations

I Field theory is action principle from which Vlasov-Maxwell equations
are derived.

I Action proposed by Low (1958) with a Lagrangian formulation for
Vlasov, i.e. based on characteristics.

I Based on particle Lagrangian for species s, Ls .

I Such an action, splitting between particle and field Lagrangian,
using standard non canonical coordinates, reads:

S =
∑
s

∫
fs(z0, t0)Ls(X(z0, t0; t), Ẋ(z0, t0; t), t) dz0 dt

+
ε0
2

∫
|∇φ+

∂A

∂t
|2 dx dt − 1

2µ0

∫
|∇ × A|2 dxdt.

Particle distribution functions fs taken at initial time.
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The electromagnetic gyrokinetic field theory

I Gyrokinetics is a low frequency approximation.
Darwin approximation: ∂tA removed from Lagrangian.

I Quasi-neutrality approximation: |∇φ|2 removed:

S =
∑
s

∫
fs(z0, t0)(A∗ · Ẋ− H) dz0 −

1

2µ0

∫
|∇ × (A‖b)|2 dx.

I Additional approximation made to avoid fully implicit formulation:
Second order term in Lagrangian linearised (consistent with
ordering) by replacing full f by background fM

S =
∑
s

∫
fs(z0, t0)(A∗ · Ẋ− H0 − H1)dz0

−
∑
s

∫
fM,s(z0)H2 dz0 −

1

2µ0

∫
|b×∇A‖|2 dx.
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Derivation of the gyrokinetic equations from the ac-
tion principle

We denote by B∗ = ∇× A∗ and B∗‖ = B∗ · b.

I Setting δS
δZi

= 0, i = 1, 2, 3, 4 yields:

B∗ × Ṙ = −m

q
Ṗ‖b−

1

q
∇(H0 + H1), b · Ṙ =

1

m

∂(H0 + H1)

∂p‖
.

I Solving for Ṙ and Ṗ‖ we get the equations of motion of the
gyrocenters:

B∗‖ Ṙ =
1

m

∂(H0 + H1)

∂p‖
B∗−1

q
∇(H0+H1)×b, B∗‖ Ṗ‖ = − 1

m
∇(H0+H1)·B∗.

I These are the characteristics of the gyrokinetic Vlasov equation

∂f

∂t
+ Ṙ · ∇f + Ṗ‖

∂f

∂p‖
= 0.
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Gyrokinetic Ampere and Poisson equations

I The gyrokinetic Poisson (or rather quasi-neutrality) equation is
obtained by variations with respect to φ∫

e2i ρ
2
i ns,0

kBTi
∇⊥φ · ∇φ̃ dx =

∫
qn〈φ̃〉dx, ∀φ̃

I The gyrokinetic Ampère equation is obtained by variations with
respect to A‖:∫

∇⊥A‖ · ∇⊥Ãh
‖ dx +

∑
s

∫
µ0q

2
s ns

ms
〈Ah
‖〉〈Ãh

‖〉dx

= µ0

∫
j‖〈Ãh

‖〉dx, ∀Ãh
‖

I where A‖ = As
‖ + Ah

‖ and As
‖ is related to φ by the constraint

∂As
‖

∂t
+∇φ · b = 0.
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Conserved quantities

I Symmetries of Lagrangian yield invariants using Noether’s theorem

I Time translation: Conservation of energy:

E(t) =
∑
s

∫
dW0dV0fs,0(z0)Hs −

∫
dV

e2i ρ
2
i ns,0

kBTi
|∇φ|2

+
1

2µ0

∫
dV |∇⊥A‖|2.

I Axisymmetry of background vector potential:
Conservation of total canonical angular momentum:

Pϕ =
∑
s

es

∫
dW0dV0fs,0(z0)A?s,ϕ
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How does the mixed formulation help?

I Evolution of u‖: ∂tA
s
‖ can be replaced by −∇‖φ to get rid of v‖

formulation problem

du‖
dt

=
es
ms

(
b · ∇

[
〈φ〉 − u‖〈Ah

‖〉+
es

2ms
〈Ah
‖〉

2

]
+
∂〈As

‖〉
∂t

+
1

B∗‖
∇〈As

‖〉 · b×∇
[
〈φ〉 − u‖〈Ah

‖〉+
es

2ms
〈Ah
‖〉

2

])

I The mixed Ampere equation: Cancellation problem mitigated if Ah
‖

remains small

−∇2
⊥A‖ +

ω2
p,i + ω2

p,e

c2
〈Ah
‖〉 = µ0j‖.
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Adding a pullback at each time step

I Mixed formulation very effective for MHD modes, where E‖ = 0 and
A‖,h stays small for all time.

I It does not help so much when A‖,h grows with time. What can we
do?

I Idea is to perform change of variables (pullback) at each time step
to go back to the v‖ formulation and evolve in the mixed
formulation from there:

v‖ = u‖ −
es
ms
〈Ah
‖〉, f (v‖) = f (u‖), A‖ = Ah

‖ + As
‖, Ah

‖ = 0.

I Now Ah
‖ evolves from 0 at each time step and always stays small,

effectively removing the cancellation problem in all cases.

I This can also be seen as an integrating factor method (appropriate
change of variable) to solve the v‖ gyrokinetic formulation. In this
interpretation, mixed gyrokinetic theory not needed.
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Discretisation of the action

I Our action principles rely on a Lagrangian (as opposed to Eulerian)
formulation of the Vlasov equation: the functionals on which our
action depends are the characteristics of the Vlasov equations X and
V in addition to the scalar and vector potentials φ and A.

I A natural discretisation relies on:
I A Monte-Carlo discretisation of the phase space at the initial time:

select randomly some initial positions of the particles.
I Approximate the continuous function spaces for φ and A by discrete

subspaces.
I Yields a discrete action where a finite (large) number of scalars are

varied: the particle phase space positions and coefficients in Finite
Element basis.

I When performing the variations, we get the classical Particle In Cell
Finite Element Method (PIC-FEM).
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PIC Finite Element approximation of the Action

I FE discretisation with B-spline basis functions:

φh =
∑

φiΛi , A‖ =
∑

aiΛi .

I Particle discretisation of f ≈
∑

k wkδ(x − xk(t))δ(v − vk(t))

I Vlasov-Maxwell action becomes:

SN,h =
N∑

k=1

wkLs(Z(zk,0, t0; t), Ż(zk,0, t0; t), t)

− 1

2

∫
|
Ng∑
i=1

ai (t)b×∇Λ1
i (x)|2 dx.

I Z(zk,0, t0; t) will be traditionally denoted by zk(t) is the phase space
position at time t of the particle that was at zk,0 at time t0.
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Simulation of a TAE in a circular tokamak

I Convergence plots with respect to number of electron markers
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I Convergence plots with respect to time step
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Conclusion and related work

I Variational FE-PIC codes along with control variates for noise
reduction at the base of success of PIC simulations of Tokamak
turbulence with ORB5 family of codes.

I Pullback idea provides very simple trick to handle cancellation
problem.

I Exact conservation properties very useful for code verification

I Ongoing work (with K. Kormann, M. Kraus, P.J. Morrison)
highlights finite dimensional Poisson structure for FE-PIC codes
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