
Vlasovia, June 2016

Collisionless plasma dynamo
   François Rincon (IRAP Toulouse) 

with Francesco Califano (U. Pisa),  
Alex Schekochihin (Oxford), F. Valentini (U. Calabria) 

               Acknowledgements:  
   S. Cowley, M. Kunz, C. Cavazzoni



Vlasovia, June 2016

Cosmic magnetogenesis
• How are magnetic fields generated on cosmic scales ? 

• Magnetic seeds in the early Universe: 10-21(-10-9 ?) G 

• ICM fields: 1-40 μG at fairly large (~ 1-10 kpc) scales 

• Constraint: 5-15 fold increase on a few Gyr                                          
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ICM magnetic fields
• How do you make microGauss fields at 1-100 kpc scales ? 

• Different processes invoked  
• Magnetization via galactic outflows and jets 

• Collisionless shocks in ICM / filaments 

• Dynamo effect throughout cosmic times 

• Is turbulence (T~10-100 Myr) in the ICM                                                       
or filaments a good dynamo ?
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392 P. Schuecker et al.: Probing turbulence in the Coma galaxy cluster

145kpc

Fig. 4. Detailed view of the projected pressure distribution of the central region of the Coma cluster. The 145 kpc scale corresponds to the
largest size of the turbulent eddies indicated by the pressure spectrum (Sect. 7). The smallest turbulent eddies have scales of around 20 kpc. On
smaller scales the number of photons used for the spectral analysis is too low for reliable pressure measurements.

Fig. 5. Nested grids of temperature (left panel), pressure (middle panel), and entropy (right panel) measurements. Each map covers an area of
69.3 × 69.3 arcmin2.

shown. This figure also illustrates the relative positioning of
the grids. Each binning involves a mixing of various spectral
components. Therefore, a decision has to be made on which of
the components the spectral analyses should be performed. We
have chosen to put our interest on the hotter component, and so
have used the 1–7.9 keV energy band for spectral fitting. Fine
grids, with a pixel size of 40 × 40 arcsec2 and lower, located
in the central region, do not suffer that much from tempera-
ture mixing, but they do suffer from small number statistics.
So, for those we used the 0.5–7.9 keV band. A detailed check
has shown that for a similar location in the Coma cluster all
grids yield similar temperature estimates, which supports our

choice of energy bands. The selection of the grid resolution
was performed to yield at least 5000 counts per pixel. The total
number of counts available for the analysis in the Coma obser-
vation reaches two million counts in the 0.5–2 keV band and a
similar amount in the harder band (2–7.9 keV).

5. General character of the fluctuations

In order to obtain more information about the type of fluctua-
tions seen in Figs. 3–5, we performed a pixel-by-pixel cross-
comparison of temperature and density gradients.

Schueker et al., A&A 2004 Durrer  & Neronov, A&A Rev. 2013
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Turbulent “small-scale” dynamo

• Homogeneous, isotropic, non-helical, incompressible, chaotic 
flow of conducting fluid is a dynamo flow 

• Batchelor-Moffatt-Zeldovich’s stretch-fold mechanism 

• All you need is a smooth 3D chaotic flow, viscous flow can do the job
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First evidence in 3D MHD simulations
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Large magnetic Prandtl number regime 
• In such a fluid, the dynamo field grows at small scales 

• Naive ICM “MHD” parameters 
• Collisional viscosity estimate: Re ~ UL/ν ~ 10-100 

• Spitzer conductivity: Rm ~ UL/η ~ 1029 or more  

• Magnetic Prandtl number Pm ~ ν/η ~ 1028-30
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4 Fabian et al

Figure 3. Matching X-ray and optical images of the core of the Perseus cluster Left: Chandra composite (from Fig. 2, but without subtraction of the mean
at each radius); Right: optical from Blackbird Observatory (see text for details). The images are 11.8 arcmin from N to S. NGC 1272 is the bright elliptical
galaxy 5 arcmin WSW of NGC 1275.

Figure 4. Joint Chandra and XMM image.

and are trapped at some radius, in this case at about 220 kpc. Per-
haps they become neutrally buoyant there due to mixing with sur-
rounding gas, or the magnetic structure (possibly azimuthal there;
Quataert et al 2008) traps them. There also seems to be an overall
structure at and just within that radius to the W, possibly due to mo-
tion of the core relative to the outer cluster gas (see e.g. Churazov
et al 2003).

The two X-ray surface brightness dips to the SW of the trough
(Figs 9 and 10), which we identify as rising bubbles, have volumes
of approximately 104 kpc3 each, corresponding to about twice that
of the current inner bubbles.

The bay to the South may result from the accumulation of
Southward rising bubbles in analogy to the Northern trough. It has a
sharp, curved Northern edge and the interior is hotter than the outer
parts (Fig. 11). Perhaps there has been some mixing and heating
taking place between the relativistic and thermal intracluster gases.
It lies much closer to the nucleus of NGC1́275.

The evolution of rising bubbles in cluster gas has been stud-
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Figure 5. Surface brightness profile in the 0.5–7 keV band to the West of
the nucleus of NGC 1275.

ied and simulated by many authors (e.g. Diehl et al 2008; Liu et
al 2008). Bubbles blown by a jet are not Rayleigh-Taylor unsta-
ble because the upper surface of the bubble is not at rest relative
to the hot gas above them. The expansion of the bubbles means
that the hot gas continuously flows around them. The growth time
of the Kelvin-Helmholtz instability is comparable to the flow time.
Whether they break up or not depends on the amplitude and scale
of velocity perturbations in the hot gas. The stability of a large gas
bubble rising through liquid has been studied by Batchelor (1987).
Rising air bubbles in water can be surprisingly large. The scale size
of disruptive perturbations depends on surface tension (which in

c� 0000 RAS, MNRAS 000, 000–000

Lturb ~ 20 kpc

λe ~ 1kpc

Pressure scale Height ~ 100 kpc

Fabian et al., MNRAS 2011

BUT…
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What about weakly-collisional plasmas ?
• So far, dynamo has only been demonstrated in MHD fluids 

• Many high-energy astrophysical plasmas are not MHD fluids 

• ICM plasma regime 
• Dynamical/injection scales ~ 1017-18 km ~ 10 - 100 kpc   (T~10-100 Myr) 

• Mean free path ~1016-17 km ~ 1-10 kpc 

• Larmor radii ~ 104 km 

• Coupled “fluid-” and “kinetic-scale” phenomena 
• Large-scale dynamics: MTI, HBI, AGN, mergers, dynamo ? 

• Collisionless damping, magnetization effects (pressure anisotropies)
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Plasma dynamo: an experimental quest in progress
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Collisionless plasma dynamo problem
• The most efficient eddies are the smallest, fastest ones 

• In the ICM, such plasma motions are weakly collisional 

• Plasma is magnetised well below equipartition (ICM: 10-13 G) 
• Field-stretching motions (= dynamo !) generate pressure anisotropy 

• Pressure-anisotropy driven instabilities !
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Pressure anisotropy generation
• In a magnetized, weakly collisional plasma 

• The pressure is an anisotropic tensor with respect to the direction of B 

•                               is almost conserved 

• Large-scale, field-stretching motions generate pressure anisotropy 
• Collisions tend to relax it
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•                      conservation implies kinetic instability everywhere 
• local increase of |B| —> increase of p⊥ 

• mirror instable  

• local decrease of |B| —> decrease of  p⊥ 

• firehose instable  

• Small, fast scales                    
• ICM: 𝝆i ~ 104 km, 𝛺i-1 ~ second 

• Feedback non-linearly on “fluid” scales
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Collisionless plasma dynamo problem(s)
• Unmagnetized problem: 

• Is a collisionless, unmagnetized 3D chaotic flow of plasma a good dynamo ? 

• Magnetized problem: 
• How do pressure-anisotropy kinetic instabilities interfere with magnetic growth ? 

• Annoying “details” 
• Dynamo is a fundamentally 3D process in physical space (Cowling) 

• No rigid “guide” field here: kinetic description “3V” in velocity space 

• Modelling requires 3D-3V simulations (+time integration !) 
• Very costly: O(106-107 CPU hours) per simulation 

• Use simplest possible appropriate kinetic model

13
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Forced hybrid Vlasov-Maxwell system
• Kinetic, collisionless ions (initially Maxwellian) 

• Isothermal, fluid massless electrons 

• Quasi-neutrality:  

• Maxwell-Faraday:
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Collisionless flow forcing
• 𝛿-correlated-in-time large-scale forcing in kinetic ion equation 

• In the unmagnetized regime, flow statistics controlled by            
phase-mixing (collisionless damping) 

• Flow correlation time is                 ,                                                                               
a factor Mach number smaller than                                                              
the turnover time 

• the flow is effectively highly viscous  

• Smooth, large-scale, chaotic, subsonic, finite-amplitude flow
15
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Dynamo simulations setup
• Solve hybrid Vlasov-Maxwell in 3D-3V with Eulerian code 

• 3D periodic, phase-space dimensions:                         , 

• Resolution: 643 (physical space) x 513 (velocity space) 

• Incompressible, isotropic, non-helical delta-correlated forcing  
•                     ,  injected power 

• Box-scale, collisionless chaotic flow 

• Initial conditions 
• Isotropic ion Maxwellian, Te=Ti 

• Magnetic seed in wavenumber range  

• No guide/mean field ! 

• Magnetic energy measured as inverse of plasma
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Unmagnetized regime
• Four simulations with same initial field and flow history, but 

different magnetic diffusivity 𝜂
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Unmagnetized regime: growing case
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Small-scale dynamo
• Dynamo relies on chaotic stretching and folding of field lines 

• Folded field structure 

• Spectral evolution consistent with the formation of a Kasantsev spectrum 

• Critical Rm larger than in MHD 
• Interpreted as a small flow correlation time effect 

• Energy growth rate ~ 0.15 turnover rate for Rm ~ 15000
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Exploring the magnetization transition
• Four simulations with same resistivity and input power, but 

different initial values of 𝛽 

• Magnetic growth appears to self-accelerate
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Magnetization transition

• No scale-separation between stirring and kinetic scales !
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Magnetized regime
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Magnetized regime
• Firehose instability in strong-field curvature regions 

• Bubbly mirror fluctuations in field-stretching regions
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Magnetized regime
• Mirror structures: magnetic depressions and overdensities

24
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Magnetized regime
• Pressure anisotropy relaxation 

• Current limitations 
• Resolution: cannot go much further at 643 x 513  

• Simulations on longer timescales needed: expensive due to tiny timesteps
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Ideas on dynamo self-acceleration
• Several “nonlinear” effects possible 

• Dynamo growth entangled with kinetic mode growth 

• Net nonlinear feedback of kinetic modes (see Matt Kunz’s talk) 

• Flow viscosity decreases at magnetisation transition, eddies with                    
larger rates of strains are generated
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Magnetic spectra
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Main results and conclusions
• Dynamo in an unmagnetized collisionless plasma is possible 

• Reminiscent of turbulent large Pm MHD dynamo 

• Growth self-accelerates as the plasma gets magnetized 

• Dynamo and kinetic instabilities become entangled in the 
magnetized regime 

• Firehose instability in regions of strong field-curvature (negative 𝛥i)  

• Mirror instability in regions of field amplification (positive 𝛥i) 

• Evolution towards pressure-anisotropy-relaxed state 

• Dynamo appears to be a viable mechanism to amplify magnetic  
field to equipartition in weakly collisional extragalactic plasmas
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Perspectives
• Many interesting questions as yet largely unanswered 

• Magnetization stage really hard to understand:  no scale-separation 

• Effective impact of (nonlinear) kinetic instabilities on magnetic growth 

• Dynamical saturation 

• Helical collisionless dynamo 

• Future progress rests on  

• Higher-resolution simulations integrated over longer times 

• Experiments  

• Theory ! 

• Radio and X-ray astronomy: SKA, Astro-H, Athena+ 
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