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Sketch of experimental setup

The Earth’s ionosphere used as a natural laboratory to study turbulence in an
unlimited magnetised plasma.

Diagnostics: Escaping radiation, radars, optical emissions, etc.

Courtesy of Bo Thidé (www.physics.irfu.se)
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High Frequency Active Auroral Research Program (HAARP)

HAARP research station, near Gakona, Alaska

Established 1993, last major upgrade 2007.
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Observations of descending aurora above HAARP

Pedersen, Gustavsson, Mishin et al., Geophys. Res. Lett., 36, L18107 (2009).
Pedersen, Mishin et al., Geophys. Res. Lett., 37, L02106 (2010).
Mishin & Pedersen, Geophys. Res. Lett., 38, L01105 (2011).
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Rays of ordinary (O) mode waves

Ray-tracing
dk
dt = −∇rω

dr
dt = ∇kω

Appleton-Hartree
dispersion relation
gives ω(k, r)

Magnetic field B0 = 5× 10−5 T, tilted θ = 14.5◦ to vertical. Electron cyclotron
frequency fce = 1.4 MHz.

f0 = 3.2 MHz transmitted frequency, ∼ 100 m vacuum wavelength.

Ordinary mode waves are reflected near the critical layer where ω = ωpe.
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Rays closeup near reflection point

Rays within the Spitze region χS = ± arcsin[
√
Y/(1 + Y ) sin(θ)] ≈ ±8.04◦

reach the critical layer.
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Anomalous absorption of electromagnetic waves

o It is observed that O mode radio waves injected along the
magnetic field lines become absorbed by the ionosphere after
about one second of heating

o Happens when the transmitted frequency is below the
maximum upper hybrid frequency of the ionosphere

o Believed to be due to mode conversion to upper hybrid waves
on density striations created due to thermal instability
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Conversion O mode to upper hybrid waves

o O mode waves reflected at critical altitude z = zO where ω = ωpe.

o Solid lines: Where locally ω = ωUH mode conversion O mode to upper
hybrid waves can take place.

o Full-wave simulations to study the coupling between O mode and UH
waves. Coordinate system such that z-axis along the magnetic field.

Eliasson & Papadopoulos, Geophys. Res. Lett. 42, 2603 (2015).
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Excitations of UH waves (top) at quantized heights where UH frequency
matches resonance frequency (Sturm-Liouville problem). Absorption of O
mode wave (bottom) not dependent on electron temperature.
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Absorption strongly dependent on striation depth.

Increased absorption with decreasing magnetic field and with increasing
plasma length-scale and density of striations.
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Expression for transmission coefficient

Comparison simulation results (circles) and numerical fit to expression

T = exp

[
− 3.24δñstr

∆zUH
λ0

(η − 1.4η2)(
1

Y
− 1.09)

]
, Y =

ωce
ω0

Eliasson & Papadopoulos, Geophys. Res. Lett. 42, 2603 (2015).
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Vlasov simulations: Mode conversion to UH waves

∂fα
∂t

+ vx
∂fα
∂x

+
qα
mα

(x̂(E + Eext) + v ×B0ẑ) · ∇fα = 0

∂E

∂x
=
e

ε0

∫
(fi − fe) d2v

Eext = E0 sin(ω0t), Dipole oscillating field representing the O mode.
E0 = 2 V/m. Hydrogen ions.
• Mode-converted upper hybrid (UH) waves (∼ 50 cm) trapped in striation.
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Mode conversion to UH waves, generation of EB waves

A =
me

eB2
0

∂Ex
∂x

Normalized electric field gradient

• Short wavelength electron Bernstein (EB) waves (∼ 10 cm) excited and
leaving the striations.
• Amplitude |A| > 1 exceeds threshold for stochastic heating.

A. Najmi, B. Eliasson et al., Radio Science (in press 2016).
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Lower hybrid oscillations and electron heating

• Lower hybrid (LH) waves form standing wave pattern.
• Electron temperature rises to about 7000 K in the center of the striation.
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Electron distribution function at different times

Electron distribution is flattened and widened — bulk heating but no
high-energy tails.
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Coupling upper hybrid waves to EB and LH waves

First three electron Bernstein modes and lower hybrid waves are visible.
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3-wave decay scenarios

Matching conditions: ω0 = ω1 + ω2, k0 = k1 + k2

Also potentially 4-wave decay and UH wave collapse taking place.
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Comparison: Stochastic heating by an electrostatic wave
Equations of motion for an electron in an electrostatic wave perpendicular to
the magnetic field

m
dv(j)

dt
= −eE0 sin(kx(j) − ωt)x̂− ev(j) ×B0ẑ,

dx(j)

dt
= v(j)x

Normalized model equations

du
(j)
x

dt
= −A sin(u(j)y − Ωt)− u(j)y ,

du
(j)
y

dt
= u(j)x

where A = mkE0

eB2
0

and Ω = ω/ωce, ωce = eB0/m. Typically A > 1 leads to
stochastic motion of the particles and to rapid heating of the plasma.

Has been extensively studied in the past:

M. Balikhin et al., Phys. Rev. Lett. 70, 1259 (1993). → Electron heating by shocks
J. McChesney et al., Phys. Rev. Lett., 59, 1436 (1987). → Ion heating by drift waves
C. F. F. Karney, Phys. Fluids 21, 1584 (1978). → Ion heating by lower hybrid waves

A. Fukuyama et al., Phys. Rev. Lett. 38, 701 (1977)→ Ion heating near gyroharmonics.
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Electron distribution function

Test particle simulations 104 particles, simulation times a few hundred
gyroperiods. Flat-topped electron distributions are developed. No
suprathermal tails.
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Temperature dependence on amplitude

Each point on the curve represents one test particle simulation.
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Temperature dependence on frequency

Temperature peaks near cyclotron harmonics. Rises between cyclotron
harmonics for A > 1.
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Electron acceleration by strong Langmuir turbulence

Electromagnetic wave
breaks up into
small-scale electromagnetic
turbulence via parametric
instabilities creating
strong Langmuir turbulence

Most important:
4-wave oscillating two-stream
instability creating localized
wave envelopes accelerating
electrons
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Diffusion coefficients
and Fokker-Planck
solutions
(velocity distribution)
for different
angles of incidence

Most significant
acceleration at
3.5◦ and 10.5◦
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Physics at different length-scales

Small-scale strong Langmuir turbulence: few tens of centimetre structures.
Large amplitude electric field envelopes trapped in density cavities.
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Some notes about the Vlasov simulations

Electron Vlasov-Poisson system with stationary ions

∂f

∂t
+ v

∂f

∂x
− E∂f

∂v
= 0

∂E

∂x
= 1− ne

ne =

∫ ∞
−∞

f(x, v, t) dv

Initial condition

f(x, v, t = 0) = (2π)−1/2[1 +A cos(kx)] exp(−v2/2)

with A = 0.5, k = 0.5
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Electron phase space distribution
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Fourier transformed velocity space
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Closeup of solution

• Problems to calculate v derivatives and integrals numerically!
• Filamentation in v space gives rise to wave packet in η space.
• Strategy: Solve Vlasov equation Fourier transformed in velocity space.
• The highest harmonics in velocity space are allowed to propagate over the
boundary at η = ηmax and to be removed from the calculation.
• Introduces a minimum dissipation in velocity space: Very little numerical
heating.
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Fourier transformed Vlasov-Poisson system
(Stationary ions, normalized equations)

∂f

∂t
+ v

∂f

∂x
− E∂f

∂v
= 0,

∂E

∂x
= 1−

∫ ∞
−∞

f(x, v, t) dv

The Fourier transform pair

f(x, v, t) =

∫ ∞
−∞

f̃(x, η, t)e−iηv dη, f̃(x, η, t) =
1

2π

∫ ∞
−∞

f(x, v, t)eiηv dv

gives

∂f̃

∂t
− i ∂

2f̃

∂x∂η
+ Eηf̃ = 0,

∂E(x, t)

∂x
= 1− 2πf̃(x, η, t)η=0

Well-posed outflow boundary conditions for f̃ :

f̃ = F−1[H(k)Ff̃ ] at η = ηmax

where F and F−1 are the forward and inverse spatial Fourier transforms.
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What is flowing out at the outflow boundary?
With the outflow boundary conditions, one can show that the entropy-like
functional is non-increasing

d

dt
||f̃ ||22 =

d

dt

∫ L

0

∫ ηmax

−ηmax
|f̃ |2dη dx ≤ 0

Holds also for the 2× 2 and 3× 3 dimensional Vlasov equations
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Development of Vlasov code

o The Fourier method has been developed in 1× 1, 2× 2 and 3× 3
dimensions.

* Electromagnetic and electrostatic options
* B. Eliasson, Transport Theory and Statistical Physics 39, 387 (2011)

[Proceedings of Vlasovia 2009]

o Fully parallelized in 1× 1 and 2× 2 dimensions (using MPI), working on
parallelization in 3× 3 dimensions.

* B. Eliasson, Comput. Phys. Commun. 170, 205 (2005).
* L. K. S. Daldorff & B. Eliasson, Parallel Comput. 35, 109 (2009).

o Various versions, including 3× 3 hybrid-Vlasov, 2× 2 Darwin, 2× 2 Wigner
solvers.
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Summary

o Formation of descending aurora/ionization fronts in experiments.
Ionosphere used as a plasma laboratory!

o Wave-wave interactions: Mode conversion and parametric instabilities
creating short wavelength electrostatic waves

o Wave-particle interactions leading to acceleration of electrons

* Stochastic heating. Large amplitude electron Bernstein waves
perpendicular to the magnetic field makes the particle orbits unstable,
leading to bulk heating of electrons

* ”Quasilinear” acceleration: Diffusion in velocity space by strong Langmuir
turbulence along magnetic field leading to the formation of high-energy
tails.

o Vlasov simulations used to electron heating by Bernstein waves

o Physics on different length-scales tens of km to 0.1 m, and time-scales
microseconds to minutes.


