Forced hybrid-kinetic turbulence in 2D3V

Silvio Sergio Cerri1,2

In collaboration with:
F. Califano1, F. Rincon3, F. Jenko4, D. Told4

1Physics Department “E. Fermi”, University of Pisa, Italy
2Max-Planck-Institut für Plasmaphysik, Garching, Germany
3Université de Toulouse & CNRS, Toulouse, France
4Department of Physics and Astronomy, University of California, Los Angeles, USA

Vlasovia 2016
Copanello, May 30 - June 2, 2016
1. Motivation

2. The hybrid Vlasov-Maxwell (HVM) model

3. Results
Solar wind (SW) turbulence below the ion gyroradius

SW in-situ satellite measurements of turbulent energy spectra

- **large scales**: magnetohydrodynamic (MHD) inertial range $\rightarrow \sim k_{\perp}^{-5/3}$ spectrum.
- **first spectral break** at ions’ characteristic scales ($k_{\perp} \rho_i \sim 1$ and/or $k_{\perp} d_i \sim 1$).
- “dissipation/dispersion” range ($1 \lesssim k_{\perp} \rho_i \lesssim \rho_i / \rho_e$):
 - \rightarrow **B-field spectrum**: slope in the range $[-2.5, -3]$.
 - \rightarrow **E-field spectrum**: slope in the range $[-0.3, -1.3]$ (\rightarrow noise?).
 - \rightarrow energy in the E-field overcomes the magnetic counterpart.
Solar wind (SW) turbulence below the ion gyroradius

SW in-situ satellite measurements of turbulent energy spectra

A long-lasting debate and open problem in SW turbulence research:

what is the nature of turbulent fluctuations below ion kinetic scales?

[Sahraoui et al., PRL 102 (2009)]

[Alexandrova et al., Space Sci Rev 178 (2013)]
Solar wind (SW) turbulence below the ion gyroradius

Theoretical candidates:

kinetic Alfvén waves (KAWs)

\[
E_B(k_\perp) \propto k_\perp^{-7/3}
\]

\[
E_E(k_\perp) \propto k_\perp^{-1/3}
\]

whistler waves

[Galtier & Bhattacharjee, PoP 10, 3065 (2003)]

\[
E_B(k_\perp) \propto k_\perp^{-7/3}
\]

\[
E_E(k_\perp) \propto k_\perp^{-1/3}
\]

Same spectra, but different physics

\[\downarrow\]

auxiliary methods to distinguish between them

Possible sources of steepening:

- Landau damping
 [Howes et al., JGR 113 (2008)]

- Compressibility effects:
 \[E_B \propto k_\perp^{-7/3 - 2\xi}\]

- Intermittency corrections:
 \[E_B \propto k_\perp^{-8/3} \text{ and } E_E \propto k_\perp^{-2/3}\]
Solar wind (SW) turbulence below the ion gyroradius

Numerical simulations: reproducing energy spectra

3D GK driven KAWs [Howes et al., PRL 107 (2011)]

3D HVM freely-decaying [Servidio et al., JPP 81 (2015)]

So far, freely-decaying simulations and/or focus on one scenario at a time
Hybrid Vlasov-Maxwell (HVM) model

Fully kinetic ions & massless electron fluid:

\[
\frac{\partial f_i}{\partial t} + \mathbf{v} \cdot \frac{\partial f_i}{\partial \mathbf{x}} + (\mathbf{E} + \mathbf{v} \times \mathbf{B} + \mathbf{F}) \cdot \frac{\partial f_i}{\partial \mathbf{v}} = 0 \quad \text{(Vlasov equation)}
\]

\[
\mathbf{E} = -\mathbf{u}_i \times \mathbf{B} + \frac{1}{n} (\mathbf{J} \times \mathbf{B}) - \frac{1}{n} \nabla P_e + \eta \mathbf{J} + \mathcal{O} \left(\frac{m_e}{m_i} \right) \quad \text{(gener. Ohm’s law)}
\]

\[
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}, \quad \nabla \times \mathbf{B} = \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} \quad \text{(Maxwell’s equations)}
\]

\[
\mathbf{F} = \mathbf{F}(\mathbf{x}, t): \text{ random forcing, } \delta\text{-correlated in time.}
\]

\[
m_e = 0, \quad n_i = n_e = n, \quad \omega/k \ll c, \quad P_e = nT_{e0}
\]
Simulations setup

- **2D-3V phase space:**

 \[1024^2 \times 51^3\] grid points \((k_\perp d_i \in [0.1, 51.2])\)

- **Initial condition:**

 \[f_i(x, v, t = 0) = \text{isotropic Maxwellian}\]

 \[B(x; t = 0) = B_0 e_z + \delta B(x) \quad (|\delta B| \ll B_0 \text{ and } 0.1 \leq (k_\perp d_i)_{\delta B} \leq 0.3)\]

- **F injection scale:**

 \[0.1 \leq (k_\perp d_i)_F \leq 0.2\] (continuously forced)

 \[\rightarrow \text{forcing contributions: } \sim 50\% \text{ compressible, } \sim 50\% \text{ incompressible}\]

- **Beta regimes investigated:**

 \[\beta = 0.2, 1 \text{ and } 5\]
The quest for a compromise: model & setup

Major “weak” points
- reduced dimensionality (2D) of the simulations
- electron Landau damping (LD) is missing on all modes

Major “strong” points
- in 2D we can include three decades in the spectra
- fully kinetic ions (e.g., ion cyclotron resonances are included)
- we do not focus on a particular mode (both KAWs and whistler are allowed)
- F allows to reach a quasi-steady turbulent state
- the growth of in-plane magnetic fluctuations allows for $k_{||} \neq 0$

we expect these “2.5D” simulations to retain some important dynamical features of the fully 3D case
Developing plasma turbulence (J_z)

Example of J_z contours for $\beta_i = 1$, at $\Omega_{ci}t = 120$ (left) and $\Omega_{ci}t = 225$ (right).

- formation of small-scale structures \rightarrow kinetic regime
- current sheets \rightarrow magnetic reconnection \rightarrow fully developed turbulence
Developing plasma turbulence (B_\perp)

Example of B_\perp contours and A_z lines for $\beta_i = 1$, at $\Omega_{ci}t = 120$ (left) and $\Omega_{ci}t = 225$ (right).

- in-plane magnetic fluctuations: randomly oriented, $\langle B_\perp \rangle < 0.1$
- local high-B_\perp spots: current sheets, coherent structures
Developed plasma turbulence (E_\perp)

Contours of E_{MHD} (left) and of E_{Hall} (right) for $\beta_i = 1$ at $\Omega_{ci} t = 225$.

- $E_{\text{MHD}} = u_i \times B$ dominates at large-scales (left)
- $E_{\text{Hall}} = (J \times B)/n$ dominates at small-scales, inside current sheets (right)
Magnetic energy spectrum

- $k_{\perp} d_i < 1$: Kolmogorov-type $k_{\perp}^{-5/3}$ spectrum
- spectral break at $1 \lesssim k_{\perp} d_i \lesssim 2$
- $k_{\perp} d_i > 1$: consistent with $k_{\perp}^{-8/3}$ at $\beta = 0.2, 1$ (k_{\perp}^{-3} at $\beta_i = 5$)
Electric energy spectrum

- Electric energy overcomes magnetic counterpart at $k_{\perp}d_i \sim 2$

- Spectral slopes generally steeper than theory predictions
 (observed in other simulations and some SW measurements \rightarrow feedbacks?)
KAWs or whistlers? (Auxiliary method I)

Auxiliary method I:

[Chen et al., PRL 110, 225002 (2013)]

comparing the level of E_B and $C_0 E_n$

(with $C_0 = [\beta_i(1 + \tau)/2][1 + \beta_i(1 + \tau)/2]$)

- **KAWs** → $C_0 E_n \simeq E_B$.
- **whistlers** → $C_0 E_n \ll E_B$.

![Graphs showing the comparison between E_B and $C_0 E_n$ for different values of β.](image)
Auxiliary method II:

KAWs fluctuations would obey the following relation:

\[C_1 E_n = E_B || \]

(with \(C_1 = [\beta_i (1 + \tau) / 2]^2 \))
Partially compressible vs incompressible injection ($\beta = 0.2$)

Partially compressible forcing ($\nabla \cdot \mathbf{F} \neq 0$):

$$\langle E_{B\parallel}(k_{\perp}) \rangle, C_1 \langle E_n(k_{\perp}) \rangle$$

$\beta = 0.2$

\rightarrow well separated even at $k_{\perp} \rho_i > 1$

Purely incompressible forcing ($\nabla \cdot \mathbf{F} = 0$):

$$\langle E_{B\parallel}(k_{\perp}) \rangle, C_1 \langle E_n(k_{\perp}) \rangle$$

\rightarrow transition to KAWs at $k_{\perp} \rho_i \sim 1$
Conclusions

- **general agreement of spectral properties** of the turbulence (e.g., power laws and spectral breaks) with observations/theory.

- In this setup turbulence mainly involves **whistler fluctuations at low** β, and **KAWs at somewhat higher** β.

- **KAW \leftrightarrow whistler turbulence transition**: possible correlation with resonant/non-resonant damping of the modes.
 (not straightforward: linear damping and/vs non-linear effects)

- **compressibility level** of injected fluctuations matters \rightarrow
 non-universality and possible implications on time and space variability of SW.

 \rightarrow **call for further investigations on these topics...**
Thanks for your attention!