Forced hybrid-kinetic turbulence in 2D3V

Silvio Sergio Cerri^{1,2}

In collaboration with:

F. Califano¹, F. Rincon³, F. Jenko⁴, D. Told⁴

¹Physics Department "E. Fermi", University of Pisa, Italy
 ²Max-Planck-Institut für Plasmaphysik, Garching, Germany
 ³Université de Toulouse & CNRS, Toulouse, France
 ⁴Department of Physics and Astronomy, University of California, Los Angeles, USA

Vlasovia 2016

Copanello, May 30 - June 2, 2016

2 The hybrid Vlasov-Maxwell (HVM) model

SW in-situ satellite measurements of turbulent energy spectra

- large scales: magnetohydrodynamic (MHD) intertial range $\rightarrow \sim k_{\perp}^{-5/3}$ spectrum.
- first spectral break at ions' characteristic scales (k_⊥ρ_i ~ 1 and/or k_⊥d_i ~ 1).
- "dissipation/dispersion" range $(1 \leq k_{\perp}\rho_i \leq \rho_i/\rho_e)$:
 - \rightarrow **B-field spectrum**: slope in the range [-2.5, -3].
 - \rightarrow E-field spectrum: slope in the range [-0.3, -1.3] (\rightarrow noise?).
 - \rightarrow energy in the E-field overcomes the magnetic counterpart.

S. S. Cerri (U. of Pisa)

HVM turbulence

SW in-situ satellite measurements of turbulent energy spectra

A long-lasting debate and open problem in SW turbulence research:

what is the nature of turbulent fluctuations below ion kinetic scales?

Theoretical candidates:

kinetic Alfvén waves (KAWs) [Schekochihin et al., ApJ Supp. Series 182, 310 (2009)] $E_B(k_\perp) \propto k_\perp^{-7/3}$ $E_E(k_\perp) \propto k_\perp^{-1/3}$

whistler waves [Galtier & Bhattacharjee, PoP 10, 3065 (2003)] $E_B(k_\perp) \propto k_\perp^{-7/3}$ $E_E(k_\perp) \propto k_\perp^{-1/3}$

Same spectra, <u>but</u> different physics \downarrow auxiliary methods to distinguish between them

Possible sources of steepening:

- Landau damping [Howes et al., JGR 113 (2008)]
- Compressiblility effects: $E_B \propto k_{\perp}^{-7/3-2\xi}$ [Alexandrova et al., ApJ 674 (2008)]
- Intermittency corrections: $E_B \propto k_{\perp}^{-8/3}$ and $E_E \propto k_{\perp}^{-2/3}$ [Boldyrev & Perez, ApJL 758 (2012)]

Numerical simulations: reproducing energy spectra

Hybrid Vlasov-Maxwell (HVM) model

Fully kinetic ions & massless electron fluid:

[Valentini et al., JCP 225, 753 (2007)]

$$\frac{\partial f_{i}}{\partial t} + \mathbf{v} \cdot \frac{\partial f_{i}}{\partial \mathbf{x}} + (\mathbf{E} + \mathbf{v} \times \mathbf{B} + \mathbf{F}) \cdot \frac{\partial f_{i}}{\partial \mathbf{v}} = 0 \quad \text{(Vlasov equation)}$$
$$\mathbf{E} = -\mathbf{u}_{i} \times \mathbf{B} + \frac{1}{n} (\mathbf{J} \times \mathbf{B}) - \frac{1}{n} \nabla P_{e} + \eta \mathbf{J} + \mathcal{O}\left(\frac{m_{e}}{m_{i}}\right) \text{(gener. Ohm's law)}$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}, \qquad \nabla \times \mathbf{B} = \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} \quad \text{(Maxwell's equations)}$$

 $\mathbf{F} = \mathbf{F}(\mathbf{x}, t)$: random forcing, δ -correlated in time.

$$m_{\mathrm{e}} = 0, \quad n_{\mathrm{i}} = n_{\mathrm{e}} = n, \quad \omega/k \ll c, \quad P_{\mathrm{e}} = nT_{\mathrm{e}0}$$

• 2D-3V phase space:

 $1024^2 \times 51^3$ grid points (**k**_{\perp}**d**_i \in [0.1, 51.2])

initial condition:

 $f_i(\mathbf{x}, \mathbf{v}, t = 0) = i$ sotropic Maxwellian $\mathbf{B}(\mathbf{x}; t = 0) = B_0 \mathbf{e}_z + \delta \mathbf{B}(\mathbf{x}) \quad (|\delta \mathbf{B}| \ll B_0 \text{ and } 0.1 \le (k_\perp d_i)_{\delta B} \le 0.3)$

• F injection scale:

 $0.1 \leq (k_\perp d_{
m i})_{
m F} \leq 0.2$ (continuously forced)

 \rightarrow forcing contributions: $\sim 50\%$ compressible, $\sim 50\%$ incompressible

beta regimes investigated:

 $\beta\,=\,$ 0.2, 1 and 5

The quest for a compromise: model & setup

Major "weak" points

- reduced dimensionality (2D) of the simulations
- electron Landau damping (LD) is missing on all modes

Major "strong" points

- in 2D we can include three decades in the spectra
- fully kinetic ions (e.g., ion cyclotron resonances are included)
- we do not focus on a particular mode (both KAWs and whistler are allowed)
- F allows to reach a quasi-steady turbulent state
- the growth of in-plane magnetic fluctuations allows for $k_{||} \neq 0$

we expect these "2.5D" simulations to retain some important dynamical features of the fully 3D case

Developing plasma turbulence (J_z)

Example of J_z contours for $\beta_i = 1$, at $\Omega_{ci}t = 120$ (left) and $\Omega_{ci}t = 225$ (right).

- formation of small-scale structures \rightarrow kinetic regime
- $\bullet~$ current sheets $\rightarrow~$ magnetic reconnection $\rightarrow~$ fully developed turbulence

Developing plasma turbulence (B_{\perp})

Example of B_{\perp} contours and A_z lines for $\beta_i = 1$, at $\Omega_{ci}t = 120$ (left) and $\Omega_{ci}t = 225$ (right).

- in-plane magnetic fluctuations: randomly oriented, $\langle B_{\perp} \rangle < 0.1$
- local high- B_{\perp} spots: current sheets, coherent structures

S. S. Cerri (U. of Pisa)

HVM turbulence

Developed plasma turbulence (E_{\perp})

Contours of $E_{
m MHD}$ (left) and of $E_{
m Hall}$ (right) for $\beta_{
m i}=1$ at $\Omega_{
m ci}t=225$.

- $\mathbf{E}_{MHD} = \mathbf{u}_i \times \mathbf{B}$ dominates at large-scales (left)
- $\mathbf{E}_{\text{Hall}} = (\mathbf{J} \times \mathbf{B})/n$ dominates at small-scales, inside current sheets (right)

Magnetic energy spectrum

Cerri et al., ApJL 822, L12 (2016)

- $k_{\perp}d_{\rm i} < 1$: Kolmogorov-type $k_{\perp}^{-5/3}$ spectrum
- spectral break at $1 \lesssim k_\perp d_{
 m i} \lesssim 2$
- $k_{\perp}d_{\rm i}>1$: consistent with $k_{\perp}^{-8/3}$ at $\beta=0.2, 1~(k_{\perp}^{-3}$ at $\beta_{\rm i}=5)$

Electric energy spectrum

Cerri et al., ApJL 822, L12 (2016)

- electric energy overcomes magnetic counterpart at $k_\perp d_{
 m i}\sim 2$
- spectral slopes generally steeper than theory predictions (observed in other simulations and some SW measurements → feedbacks?)

KAWs or whistlers? (Auxiliary method I)

Cerri et al., ApJL 822, L12 (2016)

Auxiliary method I:

[Chen et al., PRL 110, 225002 (2013)]

comparing the level of E_B and $C_0 E_n$ (with $C_0 = [\beta_i(1 + \tau)/2][1 + \beta_i(1 + \tau)/2]$)

- KAWs $\rightarrow C_0 E_n \simeq E_B$.
- whistlers $\rightarrow C_0 E_n \ll E_B$.

KAWs or whistlers? (Auxiliary method II)

Cerri et al., ApJL 822, L12 (2016)

Auxiliary method II:

[Boldyrev et al., ApJ 777, 41 (2013)]

KAWs fluctuations would obey the following relation:

$$C_1 E_n = E_{B\parallel}$$

(with $C_1 = [\beta_i(1 + \tau)/2]^2$)

Partially compressible vs incompressible injection ($\beta = 0.2$)

Partially compressible forcing ($\nabla \cdot \mathbf{F} \neq 0$):

ightarrow well separated even at $k_{\perp}
ho_{
m i}>1$

Purely incompressible forcing $(\nabla \cdot \mathbf{F} = 0)$:

ightarrow transition to KAWs at $k_{\perp}
ho_{
m i}\sim 1$

- general agreement of spectral properties of the turbulence (e.g., power laws and spectral breaks) with observations/theory.
- in this setup turbulence mainly involves whistler fluctuations at low β , and KAWs at somewhat higher β .
- KAW ↔ whistler turbulence transition: possible correlation with resonant/non-resonant damping of the modes. (not straightforward: linear damping and/vs non-linear effects)
- compressibility level of injected fluctuations matters → non-universality and possible implications on time and space variability of SW.

 \rightarrow call for further investigations on these topics...

Thanks for your attention!