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Goal: Describe the integral transform that diagonalizes contin-

uous spectrum, and some of its uses: Solve Landau problem.

Define signature for continuous spectrum. Motivates a Krein-

like theorem for instabilities that emerge from the continuous

spectrum. Motivates a nonlinear normal form (pde).

Overview

• Integral Transform and Inverse Problem

• Energy and Signature

• Continuum Hamiltonian Hopf Bifurcation

• Nonlinear Normal Forms – Single Wave Model, Hickernell-

Berk-Breizman equation, ...



• Integral Transform and Inverse Problem



Integral Transforms

Fourier:

f(x)←→ g(k)

f(x) =
∫
R
K(x, k)g(k) dk where K(x, k) = eik·x

Hilbert:

f(v)←→ g(u)

f(v) =
∫
R
K(u, v)g(u) du where K(u, v) =

P
π

1

u− v



A General Transform for Continuous Spectra

Definition:

f(v) = G[g](v) := A(v) g(v) +B(v)H[g](v) =
∫
R
K(u, v)g(u) du

where A(v) and B(v) are real valued functions of a real variable

(K generalized function) such that:

B(v) = 1 +H[A](v) ,

and the Hilbert transform

H[g](v) :=
1

π
−
∫

g(u)

u− v
du ,

with −
∫

denoting Cauchy principal value of
∫
R.

Actually subset of more general transform!



Transform Theorems

Theorem (G1). G : Lp(R) → Lp(R), 1 < p < ∞, is a bounded

linear operator:

‖G[g]‖p ≤ Cp ‖g‖p ,

where Cp depends only on p.

Theorem (G2). If A is a good function, then G[g] has an

inverse,

G−1 : Lp(R)→ Lp(R) ,

for 1/p+ 1/q < 1, given by

g(u) = G−1[f ](u)

:=
B(u)

A2 +B2
f(u)−

A(u)

A2 +B2
H[f ](u) ,



Vlasov-Poisson System

Phase space density (1 + 1 + 1 field theory):

f : T× R2 → R+ , f(x, v, t) ≥ 0

Conservation of phase space density:

∂f

∂t
+ v

∂f

∂x
+

e

m

∂φ[x, t; f ]

∂x

∂f

∂v
= 0

Poisson’s equation:

φxx = 4π
[
e
∫
R
f(x, v, t) dv − ρB

]

Energy:

H =
m

2

∫
T

∫
R
v2f dxdv +

1

8π

∫
T

(φx)2 dx



Linear Vlasov-Poisson System

Expand about Stable Homogeneous Equilibrium:

f = f0(v) + δf(x, v, t)

Linearized EOM:

∂δf

∂t
+ v

∂δf

∂x
+

e

m

∂δφ[x, t; δf ]

∂x

∂f0

∂v
= 0

δφxx = 4πe
∫
R
δf(x, v, t) dv

Linearized Energy (Kruskal-Oberman 1958):

HL = −
m

2

∫
T

∫
R

v (δf)2

f ′0
dvdx+

1

8π

∫
T

(δφx)2 dx



Landau’s Problem

Assume

δf =
∑
k

fk(v, t)eikx , δφ =
∑
k

φk(t)eikx

Linearized EOM:

∂fk
∂t

+ ikvfk + ikφk
e

m

∂f0

∂v
= 0 , k2φk = −4πe

∫
R
fk(v, t) dv

Three methods:

1. Laplace Transforms (Landau 1946)

2. Normal Modes (van Kampen 1955)

3. Coordinate Change ⇐⇒ Integral Transform (PJM, Pfirsch,
Shadwick, ... 1992, 2000, ...)



Transform Choice and Identities

Tailor Transform as follows:

A(v) := εI(v) = −π
ω2
p

k2

∂f0(v)

∂v
⇒ B(v) := εR(v) = 1+H[εI](v) ,

General identities written out for this case

• G−1 is the inverse of G

• G−1[vf ](u) = uG−1[f ](u)−
εI
|ε|2

1

π

∫
R
f dv

• G−1[εI](u) =
εI(u)

|ε|2(u)

where |ε|2 = ε2I + ε2R and recall εI ∼ f ′0.



Inverse Proof

That G−1 is the inverse follows upon calculating g = G−1[G[g]],

and using Hilbert transform identities:

g(u) = Ĝ[f ](u) =
εR(u)

|ε(u)|2
f(u)−

εI(u)

|ε(u)|2
H[f ](u)

=
εR(u)

|ε(u)|2
[εR(u) g(u) + εI(u)H[g](u)]−

εI(u)

|ε(u)|2
H
[
εR(u′) g(u′) + εI(u

′)H[g](u′)
]

(u)

=
ε2
R(u)

|ε(u)|2
g(u) +

εR(u)εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H [H[εI] g + εI H[g]] (u)

=
ε2
R(u)

|ε(u)|2
g(u) +

εR(u)εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
[H[εI](u)H[g](u)− g(u) εI(u)]

= g(u) +
εR(u)εI(u)

|ε(u)|2
H[g]−

εI(u)

|ε(u)|2
H[g]−

εI(u)

|ε(u)|2
H[εI]H[g]

= g(u) +
εR(u)εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H[g](u) [1 +H[εI](u)]

= g(u) +
εR(u)εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H[g](u)εR(u) = g(u)

�



Solution

Solve like Fourier transforms: operate on EOM with G−1 ⇒,

∂gk
∂t

+ iku gk − ik
εI
|ε|2

1

π

∫
R
f dv + ik

εI
|ε|2

1

π

∫
R
f dv = 0

∂gk
∂t

+ iku gk = 0

and so

gk(u, t) = ◦
gk(u)e−ikut .

Using ◦
gk = G−1[

◦
fk] we obtain the solution

fk(v, t) = G[gk(u, t)]

= G
[ ◦
gk(u)e−ikut

]
= G

[
G−1[

◦
fk]e−ikut

]

Equivalant to van Kampen’s and Landau’s solution!



Inverse Problem?

What is gk(u, t) physically? The van Kampen mode electric field!

Sum over modes

Ek(t) =
∫
R
◦
gk(u)e−ikutdu =

∫
R
E k(ω)e−iωtdω

where Ek(ω) = ◦
gk(u)/|k|.

Usual Logic: Choose
◦
fk →

◦
gk such that

lim
t→∞

Ek(t) ∼ e−γLt

Why? Riemann-Lebesgue Lemma: γ determined by closest pole

to real axis when ◦
gk(u) continued into complex u-plane.

Inverse Logic: Choose Ek(t) → ◦
gk →

◦
fk. Note, Ek(t) can have

ANY t→∞ asymptotic behavior. Price paid is strange
◦
fk. (spe-

cial case due to Weitzner 1960s).



• Energy and Signature



Charged Particle on Slick Mountain

Falls and Rotates ⇒ Precession

Realized in a uniformly charged column.



Charged Particle on Quadratic Mountain

Simple model of FLR stabilization → plasma mirror machine.

Lagrangian:

L =
m

2

(
ẋ2 + ẏ2

)
+
eB

2
(ẏx− ẋy) +

K

2

(
x2 + y2

)

Hamiltonian:

H =
m

2

(
p2
x + p2

y

)
+ ωL (ypx − xpy)−

m

2

(
ω2
L − ω

2
0

) (
x2 + y2

)

Two frequencies:

ωL =
eB

2m
and ω0 =

√
K

m



Hamiltonian Hopf Bifurcation (Krein Crash)

x, y ∼ eiωt = eλt



Quadratic Mountain Stable Normal Form

For large enough B system is stable and ∃ a coordinate change,

a canonical transformation (q, p)→ (Q,P ), to

H =
|ωf |

2

(
P2
f +Q2

f

)
−
|ωs|
2

(
P2
s +Q2

s

)

Slow mode is a negative energy mode – a stable oscillation that

lowers the energy relative to the equilibrium state.

Weierstrass (1894), Williamson (1936), ...

.

• Hamiltonian normal form theory.



Krein-Moser Bifurcation Theorem

Krein (1950) – Moser (1958) – Sturrock (1958)

Such bifurcation to instability (with quartets) can only happen

if colliding eigenvalues have opposite signature σi ∈ {±}, where

H =
∑
i

σi|ωi|(p2
i + q2

i )/2 =
∑
i

σi|ωi|Ji

One must be a negative energy mode.

Sturrock looked at two-stream instability.



Vlasov in Class of Hamiltonian Field Theories

• plasma physics (charged particles-electrostatic)

• vortex dynamics, QG, shear flow

• stellar dynamics

• statistical physics (XY-interaction)

• ...

• general transport via mean field theory



Hamiltonian Structure

Noncanonical Poisson Bracket:

{F,G} =
∫
Z
dqdp f

[
δF

δf
,
δG

δf

]
=
∫
Z
dqdpFfJGf =

〈
f, [Ff , Gf ]

〉

Cosymplectic Operator:

J · =
∂f

∂p

∂ ·
∂q
−
∂f

∂q

∂ ·
∂p

Vlasov:
∂f

∂t
= {f,H} = J

δH

δf
= −[f, E].

Casimir Degeneracy:

{C,F} = 0 ∀F for C[f ] =
∫
Z
dqdp C(f)

Too many variables and not canonical.

See Cartoon – Hamiltonian on leaf.



VP Cartoon– Symplectic Rearrangement

f(x, v, t) = f̊ ◦ z̊

f ∼ g if f = g ◦ z

with z symplectomorphism

, ~ 
1 

p = mv

µ volume measure

f(x, v, t) = f̊ (̊x(x, v, t), v̊(x, v, t))



Linear Hamiltonian Theory

Expand f-dependent Poisson bracket and Hamiltonian ⇒

Linear Poisson Bracket:

{F,G}L =
∫
f0

[
δF

δδf
,
δG

δδf

]
dx dv ,

∂δf

∂t
= {δf,HL}L ,

where quadratic Hamiltonian HL is the Kruskal-Oberman energy
and linear Poisson bracket is { , }L = { , }f0

.

Note:

δf not canonical
HL not diagonal



Landau’s Problem Again

Assume

δf =
∑
k

fk(v, t)eikx , δφ =
∑
k

φk(t)eikx

Linearized EOM:

∂fk
∂t

+ ikvfk + ikφk
e

m

∂f0

∂v
= 0 , k2φk = −4πe

∫
R
fk(v, t) dv



Canonization & Diagonalization

Fourier Linear Poisson Bracket:

{F,G}L =
∞∑
k=1

ik

m

∫
R
f ′0

(
δF

δfk

δG

δf−k
−
δG

δfk

δF

δf−k

)
dv

Linear Hamiltonian:

HL = −
m

2

∑
k

∫
R

v

f ′0
|fk|2 dv +

1

8π

∑
k

k2|φk|2

=
∑
k,k′

∫
R

∫
R
fk(v)Ok,k′(v|v

′) fk′(v
′) dvdv′

Canonization:

qk(v, t) = fk(v, t) , pk(v, t) =
m

ikf ′0
f−k(v, t) =⇒

{F,G}L =
∞∑
k=1

∫
R

(
δF

δqk

δG

δpk
−
δG

δqk

δF

δpk

)
dv



Diagonalization

Mixed Variable Generating Functional:

F[q, P ′] =
∞∑
k=1

∫
R
qk(v)G[P ′k](v) dv

Canonical Coordinate Change (q, p)←→ (Q′, P ′):

New Hamiltonian:

HL = 1
2

∞∑
k=1

∫
R
duσk(u)ωk(u)

[
Q2
k(u) + P2

k (u)
]

=
∞∑
k=1

∫
R
dω ω

|ε(k, ω)|2

εI(k, ω)
|Ek(ω)|2 =

∞∑
k=1

∫
R
dω ω Jk(ω)

where ωk(u) = |ku| and the signature is

σk(v) := −sgn(vf ′0(v))

Note: wave energy (Von Laue 1905) ∼ |Ek(ω)|2 ω∂ε/∂ω has no
meaning/use for stable Vlasov continuous spectrum.



• Continuum Hamiltonian Hopf Bifurcation



Main CHH Results

• Let f0 be a stable equilibrium solution of the Vlasov-Poisson
equation.

• If f ′0 = 0 has more than one solution there exist infinitesimal
dynamically accessible perturbations that make the system
unstable.

• The frequency of the unstable modes is in a neighborhood
of the solutions of f ′0 that have f ′′0 > 0.

• If there is only one solution to f ′0 = 0, then the system is
structurally stable.

• If dynamical accessibility is not required then f ′0 is always
structurally unstable.



Structurally Unstable Equilibrium

← Pertrubed Maxwellian

Dynamically accessible perturbations are physical perturbations

since they result from electric fields.



Destabilization of Maxwellian Distribution
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Hamiltonian Spectrum

Hamiltonian Operator:

fkt = −ikvfk +
if ′0
k

∫
R
dv̄ fk(v̄, t) =: Tkfk ,

Complete System:

fkt = Tkfk and f−kt = T−kf−k , k ∈ R+

Lemma If λ is an eigenvalue of the Vlasov equation linearized

about the equilibrium f ′0(v), then so are −λ and λ∗ . Thus if

λ = γ + iω, then eigenvalues occur in the pairs, ±γ and ±iω,
for purely real and imaginary cases, respectively, or quartets,

λ = ±γ ± iω, for complex eigenvalues.



Spectral Stability

Definition The dynamics of a Hamiltonian system linearized

around some equilibrium solution, with the phase space of solu-

tions in some Banach space B, is spectrally stable if the spectrum

σ(T ) of the time evolution operator T is purely imaginary.

Theorem If for some k ∈ R+ and u = ω/k in the upper half

plane the plasma dispersion relation,

ε(k, u) := 1− k−2
∫
R
dv

f ′0
u− v

= 0 ,

then the system with equilibrium f0 is spectrally unstable. Oth-

erwise it is spectrally stable.



Nyquist Method

f ′0 ∈ C
0,α(R)⇒ ε ∈ Cω(uhp).

Therefore, Argument Principle ⇒ winding # = # zeros of ε

Stable →



Spectral Theorem

Set k = 1 and consider T : f 7→ ivf− if ′0
∫
f in the space W1,1(R).

W1,1(R) is Sobolev space containing closure of functions

‖f‖1,1 = ‖f‖1 + ‖f ′‖1 =
∫
R
dv(|f |+ |f ′|)

Definition Resolvent of T is R(T, λ) = (T −λI)−1 and λ ∈ σ(T ).
(i) λ in point spectrum, σp(T ), if R(T, λ) not injective. (ii) λ
in residual spectrum, σr(T ), if R(T, λ) exists but not densely
defined. (iii) λ in continuous spectrum, σc(T ), if R(T, λ) exists,
densely defined but not bounded.

Theorem Let λ = iu. (i) σp(T ) consists of all points iu ∈ C,
where ε = 1 − k−2 ∫

Rdv f
′
0/(u− v) = 0. (ii) σc(T ) consists of all

λ = iu with u ∈ R \ (−iσp(T ) ∩ R). (iii) σr(T ) contains all the
points λ = iu in the complement of σp(T ) ∪ σc(T ) that satisfy
f ′0(u) = 0.

cf. e.g. P. Degond (1986). Similar but different.



The CHH Bifurcation

• Usual case: f0(v, vd) one-parameter family of equilibria. Vary

vd, embedded mode appears in continuous spectrum, then

ε(k, ω) has a root in uhp.

• But all equilibria infinitesmally close to instability in Lp(R).

Need measure of distance to bifurcation.

• Waterbag ‘onion’ replacement for f0 has ordinary Hamilto-

nian Hopf bifurcation. Thus, gives a discretization of the

continuous spectrum.



• Nonlinear Normal Forms



Single-Wave Behavior- Nonlinear

Behavior near marginality in many simulations in various physical

contexts



Single-Wave Model

Asymptotics with trapping scaling ... ⇒

Qt + [Q, E] = 0 , E = y2/2− ϕ

iAt =
〈
Q e−ix

〉
, ϕ = Aeix +A∗e−ix ,

where

[f, g] := fxgy − fygx , 〈 · 〉 :=
1

2π

∫ ∞
−∞

dy
∫ 2π

0
dx · (1)

and

Q(x, y, t) = density (vorticity), ϕ(x, t)=potential (streamfunc-

tion), A(t)=single-wave of amplitude, E= particle energy

Model has continuous spectrum with embedded mode that can

be pushed into instability and then tracked nonlinearly.



Summary

Underview:

• Integral Transform and Inverse Problem

• Energy and Signature

• Continuum Hamiltonian Hopf Bifurcation

• Nonlinear Normal Forms – Single Wave Model, Hickernell-

Berk-Breizman equation, ...



Conclusions

• Useful tool akin to Hilbert or other transforms?

• Applicable to wide class of problems. Tailor to problem.

• Motivates further developments (both physics and math)


