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Goal: Describe the integral transform that diagonalizes contin-
uous spectrum, and some of its uses: Solve Landau problem.
Define signature for continuous spectrum. Motivates a Krein-
like theorem for instabilities that emerge from the continuous
spectrum. Motivates a nonlinear normal form (pde).

Overview

e Integral Transform and Inverse Problem

e Energy and Signature

e Continuum Hamiltonian Hopf Bifurcation

e Nonlinear Normal Forms — Single Wave Model, Hickernell-
Berk-Breizman equation, ...



e Integral Transform and Inverse Problem



Integral Transforms

Fourier:
f(z) +— g(k)

f(z) = /RK(OG, k)g(k) dk where K(z, k) = ek®

Hilbert:

f(v) <= g(u)

f(v) = /RK(U,v)g(u) du where K(u,v) = ? 1

mTu — v




A General Transform for Continuous Spectra

Definition:

f(v) = Glgl(v) = A(v) g(v) + B(v) Hlg](v) = /RK(u,v)g(U) du

where A(v) and B(wv) are real valued functions of a real variable
(K generalized function) such that:

B(v) =1+ H[A](v),

and the Hilbert transform

Hlgl(w) = f S

with f denoting Cauchy principal value of [p.

du ,

U —7v

Actually subset of more general transform!



Transform T heorems

Theorem (G1). G: LP(R) — LP(R), 1 < p < oo, is a bounded
linear operator:

IGLglllp < Cpligllp

where Cp depends only on p.

Theorem (G2). If A is a good function, then G[g] has an
inverse,

G 1 LP(R) — LP(R),
forl/p+1/q <1, given by

g(u) = G HfI(w)
B(u)

= AQ—I—BQ f(u)_

A(u)
A2 f B2

H[f](u),



VIasov-Poisson System

Phase space density (1 + 1 + 1 field theory):
f:TxRZ > RT, f(z,v,t) >0

Conservation of phase space density:

of . O , eddla.ti 10f _

— 0
or m ox ov

Poisson’s equation:
Gz = 4T [€/Rf(337vat> dv — pB]

Energy:

H=%/T/Rv2fdwdv—l—8iﬂ/qr(gbx)2dx



Linear VlIasov-Poisson System

Expand about Stable Homogeneous Equilibrium:

f — fO(U) + 5f(CC,U,t)

Linearized EOM:

85f . 96f . e ddlx,t;6f18f0
o "% T er e

O

Linearized Energy (Kruskal-Oberman 1958):

51)2 1
HL:_% A&”(ff) dvdw—l—S—/T(é%;)zdx
0 7T




Landau’s Problem

Assume

5f =" fr(v, t)etk® 5p =" ¢y (t)elr®
k k

Linearized EOM:

3fk; e dfo

+ikofy + kg0 =0, k¢ = —4ne /R Fu(v, ) dv

Three methods:

1. Laplace Transforms (Landau 1946)
2. Normal Modes (van Kampen 1955)

3. Coordinate Change <= Integral Transform (PJM, Pfirsch,
Shadwick, ... 1992, 2000, ...)



Transform Choice and Identities

Tailor Transform as follows:

w2 A fo(v)

A(w) i=¢r(v) = T 4,

= B(v) :=er(v) = 1+Hl[e](v),

General identities written out for this case

. G~ 1 is the inverse of G
o O =uGT A o [ e
. “1r () = 1)

e (w) = B

where |e|? = €2 + €2, and recall e; ~ f}.



Inverse Proof

That G~ 1 is the inverse follows upon calculating ¢ = G~ 1[G[¢]],
and using Hilbert transform identities:

g(u)

Gy = <8 ey - S gy

er(u)

g(u) +
g(u) +

g(u) +

|e(u)]? e(u)]?

() 9C0) + 1) H1g))) = 0 H [enCu) o)+ () Al ()] )
er(w)er(u) er(u) er(u)
9(w) + = iy Bl — SR ) — 1 SGH Hler g + e Hlgl) ()
o) + DL o)) — £ Hlal () — 0 S T ler) ) gl () — o) (o)
er(u)er(u) _er(u) _oew)
P T T e e e
P Hlal ) — S L)) [1 4+ Hler) o)
P Hla) ) — S ) ()en(u) = ()



Solution

Solve like Fourier transforms: operate on EOM with G—1 =,

aak—l—zkugk—zkl 27 /fdv—l—zk| 27 /fdv—O
0
é%—l—zkugk—O

and so

gi(u, t) = g (u)etrut,

Using §, = G~1[f,] we obtain the solution

fe(v,t) = Glgp(u,t)]
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Equivalant to van Kampen’s and Landau’s solution!



Inverse Problem??

What is g, (u,t) physically? The van Kampen mode electric field!

Sum over modes
EL(t) ZARﬁk(u)e_ikUtdu:/REk(w)e_de

where Ej(w) = gi(u)/|kl.

Usual Logic: Choose f;, — &, such that

lim E(t) ~ e 7Lt
t—00

Why? Riemann-Lebesgue Lemma: ~ determined by closest pole
to real axis when gi(u) continued into complex u-plane.

Inverse Logic: Choose Ei(t) — g — fk Note, E.(t) can have

ANY t — oo asymptotic behavior. Price paid is strange j?k (spe-
cial case due to Weitzner 1960s).




e Energy and Signature



Charged Particle on Slick Mountain

Falls and Rotates = Precession

Realized in a uniformly charged column.



Charged Particle on Quadratic Mountain

Simple model of FLR stabilization — plasma mirror machine.

Lagrangian:

L=%(x2+92)+%<yx—aby>+§(:c2+y2)

Hamiltonian:

m

Hza(pg-l-pg)-l-wL(ypa:—ﬂUpy)—g( %—wg) (5’32+y2)

Two frequencies:

eB K
Wy, — % and wo — E



Hamiltonian Hopf Bifurcation (Krein Crash)

~— Posrhive mode
| ( Yewnant of gyratioun)

v-ego+§a}§ mode |
., ¢ precession)
X = C‘c-’o:,v 'B?
B :
¥ 4 ) - plane ,
T,y ~ plwt — e)\t
’;‘ s
} oo
——*"?""‘ *r—Pe——>
Y Cd5 J‘ | Q‘
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Quadratic Mountain Stable Normal Form

For large enough B system is stable and 4 a coordinate change,
a canonical transformation (¢,p) — (Q, P), to

Slow mode is a negative energy mode — a stable oscillation that
lowers the energy relative to the equilibrium state.

Weierstrass (1894), Williamson (1936), ...

e Hamiltonian normal form theory.



Krein-Moser Bifurcation Theorem

Krein (1950) — Moser (1958) — Sturrock (1958)

Such bifurcation to instability (with quartets) can only happen
if colliding eigenvalues have opposite signature o; € {£}, where

H=Y oiwi|(p? +q?)/2 = oilwi| J;
i i

One must be a negative energy mode.

Sturrock looked at two-stream instability.



Viasov in Class of Hamiltonian Field Theories

e plasma physics (charged particles-electrostatic)

e vortex dynamics, QG, shear flow

e Stellar dynamics

e statistical physics (XY-interaction)

e general transport via mean field theory



Hamiltonian Structure

Noncanonical Poisson Bracket:
0F 6@

{F.G} = [ dadp f 5

] /qudprij = (f,[Ff, Gy])

Cosymplectic Operator:

j._ﬁfﬁ- _8f6-
~ 9p dq dq Op
Vl]asov:
8

Casimir Degeneracy:

(C,Fy=0 VF for C[f]= /qude( )

Too many variables and not canonical.
See Cartoon — Hamiltonian on leaf.



VP Cartoon— Symplectic Rearrangement

f(il),’l),t) — OOE

f~gif f=goz

with z symplectomorphism

w-/\\%?—)% P = mu

= 1 volume measure

f(z,v,t) = f(@(z,v,t),0(z,v,t))



Linear Hamiltonian Theory

Expand f-dependent Poisson bracket and Hamiltonian =

Linear Poisson Bracket:

OF 6G
(F.Gh = [ fo [(Séf,w] dudv
o)
8—f={5f,HL}L,

where quadratic Hamiltonian Hj is the Kruskal-Oberman energy
and linear Poisson bracket is {, }r ={, }¢, -

Note: \
df not canonical SLM

Hj; not diagonal f_Syn?lec'hc

3 /\/




Landau’s Problem Again

Assume

5f =" frp(v, t)etke
k

Linearized EOM:

ofr | . . e 0fo
Ik 4 ik kp,— 0 = Q
o + tkvfi +1 ¢km(% :

5o =Y pp(t)e™™
k

qubk = —47?6/Rfk(v,t) dv



Canonization & Diagonalization

Fourier Linear Poisson Bracket:

o SF 6G 6G OF
F,.Gy =Y — [ f - ¢
{F,G}L kzzjlm/RfO <5fk5f_k 5fk5f—k> ’

Linear Hamiltonian:

1
——Z/—lfk|2dv + 8—Wzk2|¢k|2

k
Z / / fr.(v) Ok k’(U|U ) fk/(v/) dvdv’
kK
Canonization:
Qk(’v,t) — fk(’l),t) ) pk(?),t) — f (’U t) p—
0



Diagonalization

Mixed Variable Generating Functional:
@)
Fla,P1="3 [ ax(v) GIPI(v) dv
k=1"R
Canonical Coordinate Change (q,p) +— (Q', P'):

New Hamiltonian:

Hy = %é [ oy ) [@RCw) + PR(w)]

| 2

oo k oo
= ) /dwwle( @) |E;{;(w)|2 = > /dwwjk(w)
h—1 R e[(k,w) r—1 R
where wi(u) = |ku| and the signature is

o (v) = —sgn(vfo(v))

Note: wave energy (Von Laue 1905) ~ |Er(w)|?wde/dw has no
meaning/use for stable Vlasov continuous spectrum.



e Continuum Hamiltonian Hopf Bifurcation



Main CHH Results

Let fo be a stable equilibrium solution of the Vlasov-Poisson
equation.

If f6 = 0 has more than one solution there exist infinitesimal
dynamically accessible perturbations that make the system
unstable.

The frequency of the unstable modes is in a neighborhood
of the solutions of f] that have fJ > 0.

If there is only one solution to fé = 0, then the system is
structurally stable.

If dynamical accessibility is not required then f(’) is always
structurally unstable.



Structurally Unstable Equilibrium

< Pertrubed Maxwellian

Dynamically accessible perturbations are physical perturbations
since they result from electric fields.



—fo—x

Destabilization of Maxwellian Distribution

Hf§ +x]



Hamiltonian Spectrum

Hamiltonian Operator:

i = —ikvfi+ 190 [ 40 fi(5,6) = Ty

Complete System:

Tt = TiJk and foky =TSk keRT

Lemma If \ is an eigenvalue of the Viasov equation linearized
about the equilibrium fé(fu), then so are —\ and \* . Thus if
A = v+ w, then eigenvalues occur in the pairs, £v and +iw,
for purely real and imaginary cases, respectively, or quartets,
A = +v L 1w, for complex eigenvalues.



Spectral Stability

Definition The dynamics of a Hamiltonian system linearized
around some equilibrium solution, with the phase space of solu-
tions in some Banach space B, is spectrally stable if the spectrum
o(T) of the time evolution operator T is purely imaginary.

Theorem If for some k € RT and v = w/k in the upper half
plane the plasma dispersion relation,

/
e(k,u) :=1—k"2 [ dv Jo

R u—wv

=0,

then the system with equilibrium fqo is spectrally unstable. Oth-
erwise it is spectrally stable.



Nyquist Method
fh € COYR) = ¢ € C¥(uhp).

T herefore, Argument Principle = winding # = # zeros of ¢

U- PLANE & £-PLANE

Stable —




Spectral Theorem

Set k =1 and consider T': f +— ivf—if} [ f in the space WH1(R).
WL1(R) is Sobolev space containing closure of functions

[l = 1l + 170 = [ doCf +151)

Definition Resolvent of T is R(T,\) = (T'—XI)~1 and X € o(T).
(i) A in point spectrum, op(T), if R(T,X) not injective. (ii) A
in residual spectrum, o,(T), if R(T,)\) exists but not densely
defined. (iii) A in continuous spectrum, o.(T), if R(T,\) exists,
densely defined but not bounded.

Theorem Let A = iu. (i) op(T) consists of all points iu € C,
where e = 1 — k=2 [gdv f§/(u —v) = 0. (ii) oo(T) consists of all
A =idu with uw € R\ (—iop(T) NR). (iii)) or(T) contains all the
points A\ = iu in the complement of op(T) U oc(T) that satisfy
fo(uw) = 0.

cf. e.g. P. Degond (1986). Similar but different.



T he CHH Bifurcation

e Usual case: fo(v,vg) one-parameter family of equilibria. Vary
vq, €embedded mode appears in continuous spectrum, then
e(k,w) has a root in uhp.

e But all equilibria infinitesmally close to instability in LP(R).
Need measure of distance to bifurcation.

e \Waterbag ‘onion’ replacement for fg has ordinary Hamilto-
nian Hopf bifurcation. Thus, gives a discretization of the
continuous spectrum.



e Nonlinear Normal Forms



Single-Wave Behavior- Nonlinear

Behavior near marginality in many simulations in various physical
contexts




Single-\Wave Model

Asymptotics with trapping scaling ... =

Q+1Q.€1=0, E£=y*/2—¢

iA; = <Q e—ix> ’ o = Ael® —I—A*e_ix,
where
1 00 21
£.9) = fagy— fyge, (- )i=o= [ dy[de (D)
™ J—00 0
and

Q(x,y,t) = density (vorticity), o(x,t)=potential (streamfunc-
tion), A(t)=single-wave of amplitude, £= particle energy

Model has continuous spectrum with embedded mode that can
be pushed into instability and then tracked nonlinearly.



Summary

Underview:

e Integral Transform and Inverse Problem

e Energy and Signature

e Continuum Hamiltonian Hopf Bifurcation

e Nonlinear Normal Forms — Single Wave Model, Hickernell-
Berk-Breizman equation, ...



Conclusions

e Useful tool akin to Hilbert or other transforms?
e Applicable to wide class of problems. Tailor to problem.

e Motivates further developments (both physics and math)



