On the Vlasov Inverse problem and the Continuum Hamiltonian Hopf Bifurcation

P. J. Morrison

Department of Physics and Institute for Fusion Studies The University of Texas at Austin

morrison@physics.utexas.edu
http://www.ph.utexas.edu/~morrison/

Vlasovia, Copanello 2016

Collaborators: D. Pfirsch, B. Shadwick, G. Hagstrom,

Goal: Describe the <u>integral transform</u> that diagonalizes continuous spectrum, and some of its uses: Solve Landau problem. Define signature for continuous spectrum. Motivates a Kreinlike theorem for instabilities that emerge from the continuous spectrum. Motivates a nonlinear normal form (pde).

<u>Overview</u>

- Integral Transform and Inverse Problem
- Energy and Signature
- Continuum Hamiltonian Hopf Bifurcation
- Nonlinear Normal Forms Single Wave Model, Hickernell-Berk-Breizman equation, ...

• Integral Transform and Inverse Problem

Integral Transforms

Fourier:

$$f(x) \longleftrightarrow g(k)$$

$$f(x) = \int_{\mathbb{R}} K(x,k)g(k) \, dk \quad \text{where} \quad K(x,k) = e^{ik \cdot x}$$

Hilbert:

$$f(v) \longleftrightarrow g(u)$$

 $f(v) = \int_{\mathbb{R}} K(u,v)g(u) \, du$ where $K(u,v) = \frac{\mathbb{P}}{\pi u - v}$

A General Transform for Continuous Spectra

Definition:

$$f(v) = G[g](v) := A(v) g(v) + B(v) H[g](v) = \int_{\mathbb{R}} K(u, v) g(u) du$$

where A(v) and B(v) are real valued functions of a real variable (K generalized function) such that:

$$B(v) = 1 + H[A](v),$$

and the Hilbert transform

$$H[g](v) := \frac{1}{\pi} \oint \frac{g(u)}{u-v} du,$$

with \oint denoting Cauchy principal value of $\int_{\mathbb{R}}$.

Actually subset of more general transform!

Transform Theorems

Theorem (G1). $G: L^p(\mathbb{R}) \to L^p(\mathbb{R}), 1 , is a bounded linear operator:$

$$||G[g]||_p \le C_p ||g||_p$$
,

where C_p depends only on p.

Theorem (G2). If A is a good function, then G[g] has an inverse,

$$G^{-1}: L^p(\mathbb{R}) \to L^p(\mathbb{R}),$$

for 1/p + 1/q < 1, given by

$$g(u) = G^{-1}[f](u)$$

:= $\frac{B(u)}{A^2 + B^2} f(u) - \frac{A(u)}{A^2 + B^2} H[f](u),$

Vlasov-Poisson System

Phase space density (1 + 1 + 1 field theory): $f: \mathbb{T} \times \mathbb{R}^2 \to \mathbb{R}^+, \qquad f(x, v, t) \ge 0$

Conservation of phase space density:

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{e}{m} \frac{\partial \phi[x, t; f]}{\partial x} \frac{\partial f}{\partial v} = 0$$

Poisson's equation:

$$\phi_{xx} = 4\pi \left[e \int_{\mathbb{R}} f(x, v, t) \, dv - \rho_B \right]$$

Energy:

$$H = \frac{m}{2} \int_{\mathbb{T}} \int_{\mathbb{R}} v^2 f \, dx \, dv + \frac{1}{8\pi} \int_{\mathbb{T}} (\phi_x)^2 \, dx$$

Linear Vlasov-Poisson System

Expand about <u>Stable</u> Homogeneous Equilibrium:

$$f = f_0(v) + \delta f(x, v, t)$$

Linearized EOM:

$$\frac{\partial \delta f}{\partial t} + v \frac{\partial \delta f}{\partial x} + \frac{e}{m} \frac{\partial \delta \phi[x, t; \delta f]}{\partial x} \frac{\partial f_0}{\partial v} = 0$$
$$\delta \phi_{xx} = 4\pi e \int_{\mathbb{R}} \delta f(x, v, t) \, dv$$

Linearized Energy (Kruskal-Oberman 1958):

$$H_L = -\frac{m}{2} \int_{\mathbb{T}} \int_{\mathbb{R}} \frac{v \, (\delta f)^2}{f'_0} \, dv \, dx + \frac{1}{8\pi} \int_{\mathbb{T}} (\delta \phi_x)^2 \, dx$$

Landau's Problem

Assume

$$\delta f = \sum_{k} f_k(v,t) e^{ikx}, \qquad \delta \phi = \sum_{k} \phi_k(t) e^{ikx}$$

Linearized EOM:

$$\frac{\partial f_k}{\partial t} + ikvf_k + ik\phi_k \frac{e}{m} \frac{\partial f_0}{\partial v} = 0, \qquad k^2 \phi_k = -4\pi e \int_{\mathbb{R}} f_k(v,t) \, dv$$

Three methods:

- 1. Laplace Transforms (Landau 1946)
- 2. Normal Modes (van Kampen 1955)
- 3. Coordinate Change \iff Integral Transform (PJM, Pfirsch, Shadwick, ... 1992, 2000, ...)

Transform Choice and Identities

Tailor Transform as follows:

$$A(v) := \epsilon_I(v) = -\pi \frac{\omega_p^2}{k^2} \frac{\partial f_0(v)}{\partial v} \quad \Rightarrow \quad B(v) := \epsilon_R(v) = 1 + H[\epsilon_I](v) \,,$$

General identities written out for this case

• G^{-1} is the inverse of G

•
$$G^{-1}[vf](u) = u G^{-1}[f](u) - \frac{\epsilon_I}{|\epsilon|^2} \frac{1}{\pi} \int_{\mathbb{R}} f dv$$

•
$$G^{-1}[\epsilon_I](u) = \frac{\epsilon_I(u)}{|\epsilon|^2(u)}$$

where $|\epsilon|^2 = \epsilon_I^2 + \epsilon_R^2$ and recall $\epsilon_I \sim f'_0$.

Inverse Proof

That G^{-1} is the inverse follows upon calculating $g = G^{-1}[G[g]]$, and using Hilbert transform identities:

$$\begin{split} g(u) &= \widehat{G}[f](u) = \frac{\epsilon_R(u)}{|\epsilon(u)|^2} f(u) - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H[f](u) \\ &= \frac{\epsilon_R(u)}{|\epsilon(u)|^2} \left[\epsilon_R(u) g(u) + \epsilon_I(u) H[g](u) \right] - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H\left[\epsilon_R(u') g(u') + \epsilon_I(u') H[g](u') \right] (u) \\ &= \frac{\epsilon_R^2(u)}{|\epsilon(u)|^2} g(u) + \frac{\epsilon_R(u)\epsilon_I(u)}{|\epsilon(u)|^2} H[g](u) - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H[g](u) - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H[H[\epsilon_I] g + \epsilon_I H[g]] (u) \\ &= \frac{\epsilon_R^2(u)}{|\epsilon(u)|^2} g(u) + \frac{\epsilon_R(u)\epsilon_I(u)}{|\epsilon(u)|^2} H[g](u) - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H[g](u) - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H[g](u) - \frac{e_I(u)}{|\epsilon(u)|^2} H[e_I](u) H[g](u) - g(u) \epsilon_I(u)] \\ &= g(u) + \frac{\epsilon_R(u)\epsilon_I(u)}{|\epsilon(u)|^2} H[g] - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H[g] - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H[e_I] H[g] \\ &= g(u) + \frac{\epsilon_R(u)\epsilon_I(u)}{|\epsilon(u)|^2} H[g](u) - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H[g](u) [1 + H[\epsilon_I](u)] \\ &= g(u) + \frac{\epsilon_R(u)\epsilon_I(u)}{|\epsilon(u)|^2} H[g](u) - \frac{\epsilon_I(u)}{|\epsilon(u)|^2} H[g](u) \epsilon_R(u) = g(u) \end{split}$$

Solution

Solve like Fourier transforms: operate on EOM with $G^{-1} \Rightarrow$,

$$\frac{\partial g_k}{\partial t} + iku g_k - ik \frac{\epsilon_I}{|\epsilon|^2} \frac{1}{\pi} \int_{\mathbb{R}} f \, dv + ik \frac{\epsilon_I}{|\epsilon|^2} \frac{1}{\pi} \int_{\mathbb{R}} f \, dv = 0$$

$$\frac{\partial g_k}{\partial t} + iku \, g_k = 0$$

and so

$$g_k(u,t) = \mathring{g}_k(u)e^{-ikut}$$

Using $\mathring{g}_k = G^{-1}[\mathring{f}_k]$ we obtain the solution $f_k(v,t) = G[g_k(u,t)]$ $= G\left[\mathring{g}_k(u)e^{-ikut}\right] = G\left[G^{-1}[\mathring{f}_k]e^{-ikut}\right]$

Equivalant to van Kampen's and Landau's solution!

Inverse Problem?

What is $g_k(u,t)$ physically? The van Kampen mode electric field!

Sum over modes

where

$$E_k(t) = \int_{\mathbb{R}} \mathring{g}_k(u) e^{-ikut} du = \int_{\mathbb{R}} E_k(\omega) e^{-i\omega t} d\omega$$
$$E_k(\omega) = \mathring{g}_k(u)/|k|.$$

<u>Usual Logic</u>: Choose $\overset{\circ}{f}_k \to \overset{\circ}{g}_k$ such that

$$\lim_{t\to\infty}E_k(t)\sim e^{-\gamma_L t}$$

Why? Riemann-Lebesgue Lemma: γ determined by closest pole to real axis when $\mathring{g}_k(u)$ continued into complex *u*-plane.

<u>Inverse Logic</u>: Choose $E_k(t) \rightarrow \mathring{g}_k \rightarrow \mathring{f}_k$. Note, $E_k(t)$ can have ANY $t \rightarrow \infty$ asymptotic behavior. Price paid is strange \mathring{f}_k . (special case due to Weitzner 1960s).

• Energy and Signature

Charged Particle on Slick Mountain

Falls and Rotates \Rightarrow Precession

Realized in a uniformly charged column.

Charged Particle on Quadratic Mountain

Simple model of FLR stabilization \rightarrow plasma mirror machine.

Lagrangian:

$$L = \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 \right) + \frac{eB}{2} \left(\dot{y}x - \dot{x}y \right) + \frac{K}{2} \left(x^2 + y^2 \right)$$

Hamiltonian:

$$H = \frac{m}{2} \left(p_x^2 + p_y^2 \right) + \omega_L \left(y p_x - x p_y \right) - \frac{m}{2} \left(\omega_L^2 - \omega_0^2 \right) \left(x^2 + y^2 \right)$$

Two frequencies:

$$\omega_L = rac{eB}{2m}$$
 and $\omega_0 = \sqrt{rac{K}{m}}$

Hamiltonian Hopf Bifurcation (Krein Crash)

$$x, y \sim e^{i\omega t} = e^{\lambda t}$$

Quadratic Mountain Stable Normal Form

For large enough B system is stable and \exists a coordinate change, a canonical transformation $(q, p) \rightarrow (Q, P)$, to

$$H = \frac{|\omega_f|}{2} \left(P_f^2 + Q_f^2 \right) - \frac{|\omega_s|}{2} \left(P_s^2 + Q_s^2 \right)$$

Slow mode is a <u>negative energy mode</u> – a stable oscillation that lowers the energy relative to the equilibrium state.

Weierstrass (1894), Williamson (1936), ...

• Hamiltonian normal form theory.

•

Krein-Moser Bifurcation Theorem

Krein (1950) – Moser (1958) – Sturrock (1958)

Such bifurcation to instability (with quartets) can only happen if colliding eigenvalues have opposite signature $\sigma_i \in \{\pm\}$, where

$$H = \sum_{i} \sigma_i |\omega_i| (p_i^2 + q_i^2)/2 = \sum_{i} \sigma_i |\omega_i| J_i$$

One must be a negative energy mode.

Sturrock looked at two-stream instability.

Vlasov in Class of Hamiltonian Field Theories

- plasma physics (charged particles-electrostatic)
- vortex dynamics, QG, shear flow
- stellar dynamics
- statistical physics (XY-interaction)
- ...
- general transport via mean field theory

Hamiltonian Structure

Noncanonical Poisson Bracket:

$$\{F,G\} = \int_{\mathcal{Z}} dqdp f\left[\frac{\delta F}{\delta f}, \frac{\delta G}{\delta f}\right] = \int_{\mathcal{Z}} dqdp F_f \mathcal{J}G_f = \left\langle f, [F_f, G_f] \right\rangle$$

Cosymplectic Operator:

$$\mathcal{J} \cdot = \frac{\partial f}{\partial p} \frac{\partial}{\partial q} - \frac{\partial f}{\partial q} \frac{\partial}{\partial p}$$

Vlasov:

$$\frac{\partial f}{\partial t} = \{f, H\} = \mathcal{J}\frac{\delta H}{\delta f} = -[f, \mathcal{E}].$$

Casimir Degeneracy:

$$\{C, F\} = 0$$
 $\forall F$ for $C[f] = \int_{\mathcal{Z}} dq dp C(f)$

Too many variables and not canonical. See Cartoon – Hamiltonian on leaf.

VP Cartoon– Symplectic Rearrangement

$$f(x, v, t) = \tilde{f} \circ \tilde{z}$$
$$f \sim g \text{ if } f = g \circ z$$

with z symplectomorphism

p = mv

 μ volume measure

$$f(x,v,t) = \mathring{f}(\mathring{x}(x,v,t),\mathring{v}(x,v,t))$$

Linear Hamiltonian Theory

Expand *f*-dependent Poisson bracket and Hamiltonian \Rightarrow

Linear Poisson Bracket:

$$\{F,G\}_L = \int f_0 \left[\frac{\delta F}{\delta \delta f}, \frac{\delta G}{\delta \delta f}\right] dx dv ,$$

$$\frac{\partial \delta f}{\partial \delta f} = \left(\int f_0 \left[\frac{\delta F}{\delta \delta f}, \frac{\delta G}{\delta \delta f}\right] dx dv ,$$

$$\frac{\partial \delta f}{\partial t} = \{\delta f, H_L\}_L,\,$$

where quadratic Hamiltonian H_L is the Kruskal-Oberman energy and linear Poisson bracket is $\{, \}_L = \{, \}_{f_0}$.

Note:

 $\frac{\delta f \text{ not canonical}}{H_L \text{ not diagonal}}$

Landau's Problem Again

Assume

$$\delta f = \sum_{k} f_k(v,t) e^{ikx}, \qquad \delta \phi = \sum_{k} \phi_k(t) e^{ikx}$$

Linearized EOM:

$$\frac{\partial f_k}{\partial t} + ikvf_k + ik\phi_k \frac{e}{m} \frac{\partial f_0}{\partial v} = 0, \qquad k^2 \phi_k = -4\pi e \int_{\mathbb{R}} f_k(v,t) \, dv$$

Canonization & Diagonalization

Fourier Linear Poisson Bracket:

$$\{F,G\}_L = \sum_{k=1}^{\infty} \frac{ik}{m} \int_{\mathbb{R}} f'_0 \left(\frac{\delta F}{\delta f_k} \frac{\delta G}{\delta f_{-k}} - \frac{\delta G}{\delta f_k} \frac{\delta F}{\delta f_{-k}} \right) dv$$

Linear Hamiltonian:

$$H_{L} = -\frac{m}{2} \sum_{k} \int_{\mathbb{R}} \frac{v}{f_{0}'} |f_{k}|^{2} dv + \frac{1}{8\pi} \sum_{k} k^{2} |\phi_{k}|^{2}$$
$$= \sum_{k,k'} \int_{\mathbb{R}} \int_{\mathbb{R}} f_{k}(v) \mathcal{O}_{k,k'}(v|v') f_{k'}(v') dv dv'$$

Canonization:

$$q_k(v,t) = f_k(v,t), \qquad p_k(v,t) = \frac{m}{ikf'_0}f_{-k}(v,t) \implies$$

$$\{F,G\}_L = \sum_{k=1}^{\infty} \int_{\mathbb{R}} \left(\frac{\delta F}{\delta q_k} \frac{\delta G}{\delta p_k} - \frac{\delta G}{\delta q_k} \frac{\delta F}{\delta p_k} \right) dv$$

Diagonalization

Mixed Variable Generating Functional:

$$\mathcal{F}[q, P'] = \sum_{k=1}^{\infty} \int_{\mathbb{R}} q_k(v) G[P'_k](v) dv$$

Canonical Coordinate Change $(q, p) \leftrightarrow (Q', P')$:

New Hamiltonian:

$$H_L = \frac{1}{2} \sum_{k=1}^{\infty} \int_{\mathbb{R}} du \,\sigma_k(u) \omega_k(u) \left[Q_k^2(u) + P_k^2(u) \right]$$

$$= \sum_{k=1}^{\infty} \int_{\mathbb{R}} d\omega \,\omega \,\frac{|\epsilon(k,\omega)|^2}{\epsilon_I(k,\omega)} \,|E_k(\omega)|^2 = \sum_{k=1}^{\infty} \int_{\mathbb{R}} d\omega \,\omega \,J_k(\omega)$$

where $\omega_k(u) = |ku|$ and the signature is

 $\sigma_k(v) := -\operatorname{sgn}(vf'_0(v))$

Note: wave energy (Von Laue 1905) $\sim |E_k(\omega)|^2 \omega \partial \epsilon / \partial \omega$ has no meaning/use for stable Vlasov continuous spectrum.

• Continuum Hamiltonian Hopf Bifurcation

Main CHH Results

- Let f_0 be a stable equilibrium solution of the Vlasov-Poisson equation.
- If $f'_0 = 0$ has more than one solution there exist infinitesimal dynamically accessible perturbations that make the system unstable.
- The frequency of the unstable modes is in a neighborhood of the solutions of f'_0 that have $f''_0 > 0$.
- If there is only one solution to $f'_0 = 0$, then the system is structurally stable.
- If dynamical accessibility is not required then f'_0 is always structurally unstable.

Structurally Unstable Equilibrium

← Pertrubed Maxwellian

Dynamically accessible perturbations are physical perturbations since they result from electric fields.

Destabilization of Maxwellian Distribution

Hamiltonian Spectrum

Hamiltonian Operator:

$$f_{kt} = -ikvf_k + \frac{if_0'}{k} \int_{\mathbb{R}} d\bar{v} f_k(\bar{v}, t) =: T_k f_k,$$

Complete System:

 $f_{kt} = T_k f_k$ and $f_{-kt} = T_{-k} f_{-k}$, $k \in \mathbb{R}^+$

Lemma If λ is an eigenvalue of the Vlasov equation linearized about the equilibrium $f'_0(v)$, then so are $-\lambda$ and λ^* . Thus if $\lambda = \gamma + i\omega$, then eigenvalues occur in the pairs, $\pm \gamma$ and $\pm i\omega$, for purely real and imaginary cases, respectively, or quartets, $\lambda = \pm \gamma \pm i\omega$, for complex eigenvalues.

Spectral Stability

Definition The dynamics of a Hamiltonian system linearized around some equilibrium solution, with the phase space of solutions in some Banach space \mathcal{B} , is <u>spectrally stable</u> if the spectrum $\sigma(T)$ of the time evolution operator T is purely imaginary.

Theorem If for some $k \in \mathbb{R}^+$ and $u = \omega/k$ in the upper half plane the plasma dispersion relation,

$$\varepsilon(k,u) := 1 - k^{-2} \int_{\mathbb{R}} dv \frac{f'_0}{u-v} = 0,$$

then the system with equilibrium f_0 is spectrally unstable. Otherwise it is spectrally stable.

Nyquist Method

$$f'_0 \in C^{0,\alpha}(\mathbb{R}) \Rightarrow \varepsilon \in C^{\omega}(uhp).$$

Therefore, Argument Principle \Rightarrow winding # = # zeros of ε

Spectral Theorem

Set k = 1 and consider $T: f \mapsto ivf - if'_0 \int f$ in the space $W^{1,1}(\mathbb{R})$.

 $W^{1,1}(\mathbb{R})$ is Sobolev space containing closure of functions

$$||f||_{1,1} = ||f||_1 + ||f'||_1 = \int_{\mathbb{R}} dv(|f| + |f'|)$$

Definition Resolvent of T is $R(T,\lambda) = (T - \lambda I)^{-1}$ and $\lambda \in \sigma(T)$. (i) λ in point spectrum, $\sigma_p(T)$, if $R(T,\lambda)$ not injective. (ii) λ in residual spectrum, $\sigma_r(T)$, if $R(T,\lambda)$ exists but not densely defined. (iii) λ in continuous spectrum, $\sigma_c(T)$, if $R(T,\lambda)$ exists, densely defined but not bounded.

Theorem Let $\lambda = iu$. (i) $\sigma_p(T)$ consists of all points $iu \in \mathbb{C}$, where $\varepsilon = 1 - k^{-2} \int_{\mathbb{R}} dv f'_0/(u-v) = 0$. (ii) $\sigma_c(T)$ consists of all $\lambda = iu$ with $u \in \mathbb{R} \setminus (-i\sigma_p(T) \cap \mathbb{R})$. (iii) $\sigma_r(T)$ contains all the points $\lambda = iu$ in the complement of $\sigma_p(T) \cup \sigma_c(T)$ that satisfy $f'_0(u) = 0$.

cf. e.g. P. Degond (1986). Similar but different.

The CHH Bifurcation

- Usual case: $f_0(v, v_d)$ one-parameter family of equilibria. Vary v_d , embedded mode appears in continuous spectrum, then $\varepsilon(k, \omega)$ has a root in uhp.
- But all equilibria infinitesmally close to instability in $L^p(\mathbb{R})$. Need measure of distance to bifurcation.
- Waterbag 'onion' replacement for f_0 has ordinary Hamiltonian Hopf bifurcation. Thus, gives a discretization of the continuous spectrum.

• Nonlinear Normal Forms

Single-Wave Behavior- Nonlinear

Behavior near marginality in many simulations in various physical contexts

Single-Wave Model

Asymptotics with trapping scaling ... \Rightarrow

$$Q_t + [Q, \mathcal{E}] = 0, \qquad \mathcal{E} = y^2/2 - \varphi$$
$$iA_t = \left\langle Q e^{-ix} \right\rangle, \qquad \varphi = A e^{ix} + A^* e^{-ix},$$

where

$$[f,g] := f_x g_y - f_y g_x, \qquad \langle \cdot \rangle := \frac{1}{2\pi} \int_{-\infty}^{\infty} dy \int_{0}^{2\pi} dx \quad (1)$$

and

 $Q(x, y, t) = \text{density (vorticity)}, \quad \varphi(x, t) = \text{potential (streamfunc-tion)}, A(t) = \text{single-wave of amplitude}, \quad \mathcal{E} = \text{particle energy}$

Model has continuous spectrum with embedded mode that can be pushed into instability and then tracked nonlinearly.

Summary

Underview:

- Integral Transform and Inverse Problem
- Energy and Signature
- Continuum Hamiltonian Hopf Bifurcation
- Nonlinear Normal Forms Single Wave Model, Hickernell-Berk-Breizman equation, ...

Conclusions

- Useful tool akin to Hilbert or other transforms?
- Applicable to wide class of problems. Tailor to problem.
- Motivates further developments (both physics and math)