On the Vlasov Inverse problem and the Continuum Hamiltonian Hopf Bifurcation

P. J. Morrison
Department of Physics and Institute for Fusion Studies
The University of Texas at Austin
morrison@physics.utexas.edu
http://www.ph.utexas.edu/~morrison/
Vlasovia, Copanello 2016
Collaborators: D. Pfirsch, B. Shadwick, G. Hagstrom,

Goal: Describe the integral transform that diagonalizes continuous spectrum, and some of its uses: Solve Landau problem. Define signature for continuous spectrum. Motivates a Kreinlike theorem for instabilities that emerge from the continuous spectrum. Motivates a nonlinear normal form (pde).

Overview

- Integral Transform and Inverse Problem
- Energy and Signature
- Continuum Hamiltonian Hopf Bifurcation
- Nonlinear Normal Forms - Single Wave Model, Hickernell-Berk-Breizman equation, ...
- Integral Transform and Inverse Problem

Integral Transforms

Fourier:

$$
\begin{gathered}
f(x) \longleftrightarrow g(k) \\
f(x)=\int_{\mathbb{R}} K(x, k) g(k) d k \quad \text { where } \quad K(x, k)=e^{i k \cdot x}
\end{gathered}
$$

Hilbert:

$$
\begin{aligned}
& f(v) \longleftrightarrow g(u) \\
& f(v)=\int_{\mathbb{R}} K(u, v) g(u) d u \quad \text { where } \quad K(u, v)=\frac{\mathbb{P}}{\pi} \frac{1}{u-v}
\end{aligned}
$$

A General Transform for Continuous Spectra

Definition:

$$
f(v)=G[g](v):=A(v) g(v)+B(v) H[g](v)=\int_{\mathbb{R}} K(u, v) g(u) d u
$$

where $A(v)$ and $B(v)$ are real valued functions of a real variable (K generalized function) such that:

$$
B(v)=1+H[A](v)
$$

and the Hilbert transform

$$
H[g](v):=\frac{1}{\pi} f \frac{g(u)}{u-v} d u
$$

with f denoting Cauchy principal value of $\int_{\mathbb{R}}$.

> Actually subset of more general transform!

Transform Theorems

Theorem (G1). $G: L^{p}(\mathbb{R}) \rightarrow L^{p}(\mathbb{R}), 1<p<\infty$, is a bounded linear operator:

$$
\|G[g]\|_{p} \leq C_{p}\|g\|_{p}
$$

where C_{p} depends only on p.

Theorem (G2). If A is a good function, then $G[g]$ has an inverse,

$$
G^{-1}: L^{p}(\mathbb{R}) \rightarrow L^{p}(\mathbb{R})
$$

for $1 / p+1 / q<1$, given by

$$
\begin{aligned}
g(u) & =G^{-1}[f](u) \\
& :=\frac{B(u)}{A^{2}+B^{2}} f(u)-\frac{A(u)}{A^{2}+B^{2}} H[f](u)
\end{aligned}
$$

Vlasov-Poisson System

Phase space density $(1+1+1$ field theory $)$:

$$
f: \mathbb{T} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{+}, \quad f(x, v, t) \geq 0
$$

Conservation of phase space density:

$$
\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x}+\frac{e}{m} \frac{\partial \phi[x, t ; f]}{\partial x} \frac{\partial f}{\partial v}=0
$$

Poisson's equation:

$$
\phi_{x x}=4 \pi\left[e \int_{\mathbb{R}} f(x, v, t) d v-\rho_{B}\right]
$$

Energy:

$$
H=\frac{m}{2} \int_{\mathbb{T}} \int_{\mathbb{R}} v^{2} f d x d v+\frac{1}{8 \pi} \int_{\mathbb{T}}\left(\phi_{x}\right)^{2} d x
$$

Linear Vlasov-Poisson System

Expand about Stable Homogeneous Equilibrium:

$$
f=f_{0}(v)+\delta f(x, v, t)
$$

Linearized EOM:

$$
\begin{gathered}
\frac{\partial \delta f}{\partial t}+v \frac{\partial \delta f}{\partial x}+\frac{e}{m} \frac{\partial \delta \phi[x, t ; \delta f]}{\partial x} \frac{\partial f_{0}}{\partial v}=0 \\
\delta \phi_{x x}=4 \pi e \int_{\mathbb{R}} \delta f(x, v, t) d v
\end{gathered}
$$

Linearized Energy (Kruskal-Oberman 1958):

$$
H_{L}=-\frac{m}{2} \int_{\mathbb{T}} \int_{\mathbb{R}} \frac{v(\delta f)^{2}}{f_{0}^{\prime}} d v d x+\frac{1}{8 \pi} \int_{\mathbb{T}}\left(\delta \phi_{x}\right)^{2} d x
$$

Landau's Problem

Assume

$$
\delta f=\sum_{k} f_{k}(v, t) e^{i k x}, \quad \delta \phi=\sum_{k} \phi_{k}(t) e^{i k x}
$$

Linearized EOM:

$$
\frac{\partial f_{k}}{\partial t}+i k v f_{k}+i k \phi_{k} \frac{e}{m} \frac{\partial f_{0}}{\partial v}=0, \quad k^{2} \phi_{k}=-4 \pi e \int_{\mathbb{R}} f_{k}(v, t) d v
$$

Three methods:

1. Laplace Transforms (Landau 1946)
2. Normal Modes (van Kampen 1955)
3. Coordinate Change \Longleftrightarrow Integral Transform (PJM, Pfirsch, Shadwick, ... 1992, 2000, ...)

Transform Choice and Identities

Tailor Transform as follows:
$A(v):=\epsilon_{I}(v)=-\pi \frac{\omega_{p}^{2}}{k^{2}} \frac{\partial f_{0}(v)}{\partial v} \quad \Rightarrow \quad B(v):=\epsilon_{R}(v)=1+H\left[\epsilon_{I}\right](v)$,

General identities written out for this case

- $\quad G^{-1}$ is the inverse of G
- $\quad G^{-1}[v f](u)=u G^{-1}[f](u)-\frac{\epsilon_{I}}{|\epsilon|^{2}} \frac{1}{\pi} \int_{\mathbb{R}} f d v$
- $\quad G^{-1}\left[\epsilon_{I}\right](u)=\frac{\epsilon_{I}(u)}{|\epsilon|^{2}(u)}$
where $|\epsilon|^{2}=\epsilon_{I}^{2}+\epsilon_{R}^{2}$ and recall $\epsilon_{I} \sim f_{0}^{\prime}$.

Inverse Proof

That G^{-1} is the inverse follows upon calculating $g=G^{-1}[G[g]]$, and using Hilbert transform identities:

$$
\begin{aligned}
g(u) & =\widehat{G}[f](u)=\frac{\epsilon_{R}(u)}{|\epsilon(u)|^{2}} f(u)-\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[f](u) \\
& =\frac{\epsilon_{R}(u)}{|\epsilon(u)|^{2}}\left[\epsilon_{R}(u) g(u)+\epsilon_{I}(u) H[g](u)\right]-\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}} H\left[\epsilon_{R}\left(u^{\prime}\right) g\left(u^{\prime}\right)+\epsilon_{I}\left(u^{\prime}\right) H[g]\left(u^{\prime}\right)\right](u) \\
& =\frac{\epsilon_{R}^{2}(u)}{|\epsilon(u)|^{2}} g(u)+\frac{\epsilon_{R}(u) \epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g](u)-\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g](u)-\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}} H\left[H\left[\epsilon_{I}\right] g+\epsilon_{I} H[g]\right](u) \\
& =\frac{\epsilon_{R}^{2}(u)}{|\epsilon(u)|^{2}} g(u)+\frac{\epsilon_{R}(u) \epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g](u)-\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g](u)-\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}}\left[H\left[\epsilon_{I}\right](u) H[g](u)-g(u) \epsilon_{I}(u)\right] \\
& =g(u)+\frac{\epsilon_{R}(u) \epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g]-\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g]-\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}} H\left[\epsilon_{I}\right] H[g] \\
& =g(u)+\frac{\epsilon_{R}(u) \epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g](u)-\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g](u)\left[1+H\left[\epsilon_{I}\right](u)\right] \\
& =g(u)+\frac{\epsilon_{R}(u) \epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g](u)-\frac{\frac{\epsilon_{I}(u)}{|\epsilon(u)|^{2}} H[g](u) \epsilon_{R}(u)=g(u)}{}
\end{aligned}
$$

Solution

Solve like Fourier transforms: operate on EOM with $G^{-1} \Rightarrow$,

$$
\begin{aligned}
& \frac{\partial g_{k}}{\partial t}+i k u g_{k}-i k \frac{\epsilon_{I}}{|\epsilon|^{2}} \frac{1}{\pi} \int_{\mathbb{R}} f d v+i k \frac{\epsilon_{I}}{|\epsilon|^{2}} \frac{1}{\pi} \int_{\mathbb{R}} f d v=0 \\
& \frac{\partial g_{k}}{\partial t}+i k u g_{k}=0
\end{aligned}
$$

and so

$$
g_{k}(u, t)=\stackrel{\circ}{g}_{k}(u) e^{-i k u t}
$$

Using $\stackrel{\circ}{g}_{k}=G^{-1}\left[\stackrel{\circ}{f}_{k}\right]$ we obtain the solution

$$
\begin{aligned}
f_{k}(v, t) & =G\left[g_{k}(u, t)\right] \\
& =G\left[\stackrel{\circ}{g}_{k}(u) e^{-i k u t}\right]=G\left[G^{-1}[\stackrel{\circ}{f} k] e^{-i k u t}\right]
\end{aligned}
$$

Equivalant to van Kampen's and Landau's solution!

Inverse Problem?

What is $g_{k}(u, t)$ physically? The van Kampen mode electric field!
Sum over modes

$$
E_{k}(t)=\int_{\mathbb{R}} \stackrel{\circ}{g}_{k}(u) e^{-i k u t} d u=\int_{\mathbb{R}} E_{k}(\omega) e^{-i \omega t} d \omega
$$

where $E_{k}(\omega)=\stackrel{\circ}{g}_{k}(u) /|k|$.
Usual Logic: Choose $\stackrel{\circ}{f}_{k} \rightarrow \stackrel{\circ}{g}_{k}$ such that

$$
\lim _{t \rightarrow \infty} E_{k}(t) \sim e^{-\gamma_{L} t}
$$

Why? Riemann-Lebesgue Lemma: γ determined by closest pole to real axis when $\stackrel{\circ}{g}_{k}(u)$ continued into complex u-plane.

Inverse Logic: Choose $E_{k}(t) \rightarrow \stackrel{\circ}{g}_{k} \rightarrow \stackrel{\circ}{f}_{k}$. Note, $E_{k}(t)$ can have ANY $t \rightarrow \infty$ asymptotic behavior. Price paid is strange \dot{f}_{k}. (special case due to Weitzner 1960s).

- Energy and Signature

Charged Particle on Slick Mountain

Falls and Rotates \Rightarrow Precession
Realized in a uniformly charged column.

Charged Particle on Quadratic Mountain

Simple model of FLR stabilization \rightarrow plasma mirror machine.

Lagrangian:

$$
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{e B}{2}(\dot{y} x-\dot{x} y)+\frac{K}{2}\left(x^{2}+y^{2}\right)
$$

Hamiltonian:

$$
H=\frac{m}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\omega_{L}\left(y p_{x}-x p_{y}\right)-\frac{m}{2}\left(\omega_{L}^{2}-\omega_{0}^{2}\right)\left(x^{2}+y^{2}\right)
$$

Two frequencies:

$$
\omega_{L}=\frac{e B}{2 m} \quad \text { and } \quad \omega_{0}=\sqrt{\frac{K}{m}}
$$

Hamiltonian Hopf Bifurcation (Krein Crash)

$$
x, y \sim e^{i \omega t}=e^{\lambda t}
$$

Quadratic Mountain Stable Normal Form

For large enough B system is stable and \exists a coordinate change, a canonical transformation $(q, p) \rightarrow(Q, P)$, to

$$
H=\frac{\left|\omega_{f}\right|}{2}\left(P_{f}^{2}+Q_{f}^{2}\right)-\frac{\left|\omega_{s}\right|}{2}\left(P_{s}^{2}+Q_{s}^{2}\right)
$$

Slow mode is a negative energy mode - a stable oscillation that lowers the energy relative to the equilibrium state.

Weierstrass (1894), Williamson (1936), ...

- Hamiltonian normal form theory.

Krein-Moser Bifurcation Theorem

Krein (1950) - Moser (1958) - Sturrock (1958)

Such bifurcation to instability (with quartets) can only happen if colliding eigenvalues have opposite signature $\sigma_{i} \in\{ \pm\}$, where

$$
H=\sum_{i} \sigma_{i}\left|\omega_{i}\right|\left(p_{i}^{2}+q_{i}^{2}\right) / 2=\sum_{i} \sigma_{i}\left|\omega_{i}\right| J_{i}
$$

One must be a negative energy mode.

Sturrock looked at two-stream instability.

Vlasov in Class of Hamiltonian Field Theories

- plasma physics (charged particles-electrostatic)
- vortex dynamics, QG, shear flow
- stellar dynamics
- statistical physics (XY-interaction)
- general transport via mean field theory

Hamiltonian Structure

Noncanonical Poisson Bracket:

$$
\{F, G\}=\int_{\mathcal{Z}} d q d p f\left[\frac{\delta F}{\delta f}, \frac{\delta G}{\delta f}\right]=\int_{\mathcal{Z}} d q d p F_{f} \mathcal{J} G_{f}=\left\langle f,\left[F_{f}, G_{f}\right]\right\rangle
$$

Cosymplectic Operator:

$$
\mathcal{J} \cdot=\frac{\partial f}{\partial p} \frac{\partial \cdot}{\partial q}-\frac{\partial f}{\partial q} \frac{\partial \cdot}{\partial p}
$$

Vlasov:

$$
\frac{\partial f}{\partial t}=\{f, H\}=\mathcal{J} \frac{\delta H}{\delta f}=-[f, \mathcal{E}]
$$

Casimir Degeneracy:

$$
\{C, F\}=0 \quad \forall F \quad \text { for } \quad C[f]=\int_{\mathcal{Z}} d q d p \mathcal{C}(f)
$$

Too many variables and not canonical. See Cartoon - Hamiltonian on leaf.

VP Cartoon- Symplectic Rearrangement

$$
\begin{aligned}
& f(x, v, t)=\dot{f} \circ \tilde{z} \\
& f \sim g \text { if } f=g \circ z
\end{aligned}
$$

with z symplectomorphism

$p=m v$
μ volume measure

$$
f(x, v, t)=\tilde{f}(\dot{x}(x, v, t), \dot{v}(x, v, t))
$$

Linear Hamiltonian Theory

Expand f-dependent Poisson bracket and Hamiltonian \Rightarrow
Linear Poisson Bracket:

$$
\begin{gathered}
\{F, G\}_{L}=\int f_{0}\left[\frac{\delta F}{\delta \delta f}, \frac{\delta G}{\delta \delta f}\right] d x d v \\
\frac{\partial \delta f}{\partial t}=\left\{\delta f, H_{L}\right\}_{L}
\end{gathered}
$$

where quadratic Hamiltonian H_{L} is the Kruskal-Oberman energy and linear Poisson bracket is $\{,\}_{L}=\{,\}_{f_{n}}$.

Note:
δf not canonical
H_{L} not diagonal

Landau's Problem Again

Assume

$$
\delta f=\sum_{k} f_{k}(v, t) e^{i k x}, \quad \delta \phi=\sum_{k} \phi_{k}(t) e^{i k x}
$$

Linearized EOM:

$$
\frac{\partial f_{k}}{\partial t}+i k v f_{k}+i k \phi_{k} \frac{e}{m} \frac{\partial f_{0}}{\partial v}=0, \quad k^{2} \phi_{k}=-4 \pi e \int_{\mathbb{R}} f_{k}(v, t) d v
$$

Canonization \& Diagonalization

Fourier Linear Poisson Bracket:

$$
\{F, G\}_{L}=\sum_{k=1}^{\infty} \frac{i k}{m} \int_{\mathbb{R}} f_{0}^{\prime}\left(\frac{\delta F}{\delta f_{k}} \frac{\delta G}{\delta f_{-k}}-\frac{\delta G}{\delta f_{k}} \frac{\delta F}{\delta f_{-k}}\right) d v
$$

Linear Hamiltonian:

$$
\begin{aligned}
H_{L}=-\frac{m}{2} \sum_{k} \int_{\mathbb{R}} \frac{v}{f_{0}^{\prime}}\left|f_{k}\right|^{2} d v & +\frac{1}{8 \pi} \sum_{k} k^{2}\left|\phi_{k}\right|^{2} \\
& =\sum_{k, k^{\prime}} \int_{\mathbb{R}} \int_{\mathbb{R}} f_{k}(v) \mathcal{O}_{k, k^{\prime}}\left(v \mid v^{\prime}\right) f_{k^{\prime}}\left(v^{\prime}\right) d v d v^{\prime}
\end{aligned}
$$

Canonization:

$$
\begin{array}{r}
q_{k}(v, t)=f_{k}(v, t), \quad p_{k}(v, t)=\frac{m}{i k f_{0}^{\prime}} f_{-k}(v, t) \\
\{F, G\}_{L}=\sum_{k=1}^{\infty} \int_{\mathbb{R}}\left(\frac{\delta F}{\delta q_{k}} \frac{\delta G}{\delta p_{k}}-\frac{\delta G}{\delta q_{k}} \frac{\delta F}{\delta p_{k}}\right) d v
\end{array}
$$

Diagonalization

Mixed Variable Generating Functional:

$$
\mathcal{F}\left[q, P^{\prime}\right]=\sum_{k=1}^{\infty} \int_{\mathbb{R}} q_{k}(v) G\left[P_{k}^{\prime}\right](v) d v
$$

Canonical Coordinate Change $(q, p) \longleftrightarrow\left(Q^{\prime}, P^{\prime}\right)$:
New Hamiltonian:

$$
\begin{aligned}
H_{L} & =\frac{1}{2} \sum_{k=1}^{\infty} \int_{\mathbb{R}} d u \sigma_{k}(u) \omega_{k}(u)\left[Q_{k}^{2}(u)+P_{k}^{2}(u)\right] \\
& =\sum_{k=1}^{\infty} \int_{\mathbb{R}} d \omega \omega \frac{|\epsilon(k, \omega)|^{2}}{\epsilon_{I}(k, \omega)}\left|E_{k}(\omega)\right|^{2}=\sum_{k=1}^{\infty} \int_{\mathbb{R}} d \omega \omega J_{k}(\omega)
\end{aligned}
$$

where $\omega_{k}(u)=|k u|$ and the signature is

$$
\sigma_{k}(v):=-\operatorname{sgn}\left(v f_{0}^{\prime}(v)\right)
$$

Note: wave energy (Von Laue 1905) $\sim\left|E_{k}(\omega)\right|^{2} \omega \partial \epsilon / \partial \omega$ has no meaning/use for stable Vlasov continuous spectrum.

- Continuum Hamiltonian Hopf Bifurcation

Main CHH Results

- Let f_{0} be a stable equilibrium solution of the Vlasov-Poisson equation.
- If $f_{0}^{\prime}=0$ has more than one solution there exist infinitesimal dynamically accessible perturbations that make the system unstable.
- The frequency of the unstable modes is in a neighborhood of the solutions of f_{0}^{\prime} that have $f_{0}^{\prime \prime}>0$.
- If there is only one solution to $f_{0}^{\prime}=0$, then the system is structurally stable.
- If dynamical accessibility is not required then f_{0}^{\prime} is always structurally unstable.

Structurally Unstable Equilibrium

\leftarrow Pertrubed Maxwellian

Dynamically accessible perturbations are physical perturbations since they result from electric fields.

Destabilization of Maxwellian Distribution

Hamiltonian Spectrum

Hamiltonian Operator:

$$
f_{k t}=-i k v f_{k}+\frac{i f_{0}^{\prime}}{k} \int_{\mathbb{R}} d \bar{v} f_{k}(\bar{v}, t)=: T_{k} f_{k}
$$

Complete System:

$$
f_{k t}=T_{k} f_{k} \quad \text { and } \quad f_{-k t}=T_{-k} f_{-k}, \quad k \in \mathbb{R}^{+}
$$

Lemma If λ is an eigenvalue of the Vlasov equation linearized about the equilibrium $f_{0}^{\prime}(v)$, then so are $-\lambda$ and λ^{*}. Thus if $\lambda=\gamma+i \omega$, then eigenvalues occur in the pairs, $\pm \gamma$ and $\pm i \omega$, for purely real and imaginary cases, respectively, or quartets, $\lambda= \pm \gamma \pm i \omega$, for complex eigenvalues.

Spectral Stability

Definition The dynamics of a Hamiltonian system linearized around some equilibrium solution, with the phase space of solutions in some Banach space \mathcal{B}, is spectrally stable if the spectrum $\sigma(T)$ of the time evolution operator T is purely imaginary.

Theorem If for some $k \in \mathbb{R}^{+}$and $u=\omega / k$ in the upper half plane the plasma dispersion relation,

$$
\varepsilon(k, u):=1-k^{-2} \int_{\mathbb{R}} d v \frac{f_{0}^{\prime}}{u-v}=0
$$

then the system with equilibrium f_{0} is spectrally unstable. Otherwise it is spectrally stable.

Nyquist Method

$$
f_{0}^{\prime} \in C^{0, \alpha}(\mathbb{R}) \Rightarrow \varepsilon \in C^{\omega}(u h p)
$$

Therefore, Argument Principle \Rightarrow winding $\#=\#$ zeros of ε

Stable \rightarrow

Spectral Theorem

Set $k=1$ and consider $T: f \mapsto i v f-i f_{0}^{\prime} \int f$ in the space $W^{1,1}(\mathbb{R})$.
$W^{1,1}(\mathbb{R})$ is Sobolev space containing closure of functions

$$
\|f\|_{1,1}=\|f\|_{1}+\left\|f^{\prime}\right\|_{1}=\int_{\mathbb{R}} d v\left(|f|+\left|f^{\prime}\right|\right)
$$

Definition Resolvent of T is $R(T, \lambda)=(T-\lambda I)^{-1}$ and $\lambda \in \sigma(T)$. (i) λ in point spectrum, $\sigma_{p}(T)$, if $R(T, \lambda)$ not injective. (ii) λ in residual spectrum, $\sigma_{r}(T)$, if $R(T, \lambda)$ exists but not densely defined. (iii) λ in continuous spectrum, $\sigma_{c}(T)$, if $R(T, \lambda)$ exists, densely defined but not bounded.

Theorem Let $\lambda=i u$. (i) $\sigma_{p}(T)$ consists of all points iu $\in \mathbb{C}$, where $\varepsilon=1-k^{-2} \int_{\mathbb{R}} d v f_{0}^{\prime} /(u-v)=0$. (ii) $\sigma_{c}(T)$ consists of all $\lambda=i u$ with $u \in \mathbb{R} \backslash\left(-i \sigma_{p}(T) \cap \mathbb{R}\right)$. (iii) $\sigma_{r}(T)$ contains all the points $\lambda=$ iu in the complement of $\sigma_{p}(T) \cup \sigma_{c}(T)$ that satisfy $f_{0}^{\prime}(u)=0$.
cf. e.g. P. Degond (1986). Similar but different.

The CHH Bifurcation

- Usual case: $f_{0}\left(v, v_{d}\right)$ one-parameter family of equilibria. Vary v_{d}, embedded mode appears in continuous spectrum, then $\varepsilon(k, \omega)$ has a root in uhp.
- But all equilibria infinitesmally close to instability in $L^{p}(\mathbb{R})$. Need measure of distance to bifurcation.
- Waterbag ‘onion' replacement for f_{0} has ordinary Hamiltonian Hopf bifurcation. Thus, gives a discretization of the continuous spectrum.
- Nonlinear Normal Forms

Single-Wave Behavior- Nonlinear

Behavior near marginality in many simulations in various physical contexts

Single-Wave Model

Asymptotics with trapping scaling ... \Rightarrow

$$
\begin{array}{ll}
Q_{t}+[Q, \mathcal{E}]=0, & \mathcal{E}=y^{2} / 2-\varphi \\
\mathrm{i} A_{t}=\left\langle Q \mathrm{e}^{-\mathrm{i} x}\right\rangle, & \varphi=A \mathrm{e}^{\mathrm{i} x}+A^{*} \mathrm{e}^{-\mathrm{i} x}
\end{array}
$$

where

$$
\begin{equation*}
[f, g]:=f_{x} g_{y}-f_{y} g_{x}, \quad\langle\cdot\rangle:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d y \int_{0}^{2 \pi} d x \tag{1}
\end{equation*}
$$

and
$Q(x, y, t)=$ density (vorticity), $\quad \varphi(x, t)=$ potential (streamfunction $), A(t)=$ single-wave of amplitude, $\mathcal{E}=$ particle energy

Model has continuous spectrum with embedded mode that can be pushed into instability and then tracked nonlinearly.

Summary

Underview:

- Integral Transform and Inverse Problem
- Energy and Signature
- Continuum Hamiltonian Hopf Bifurcation
- Nonlinear Normal Forms - Single Wave Model, Hickernell-Berk-Breizman equation, ...

Conclusions

- Useful tool akin to Hilbert or other transforms?
- Applicable to wide class of problems. Tailor to problem.
- Motivates further developments (both physics and math)

