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(JFORMULATION OF THE PHYSICAL PROBLEM

SELF-CONSISTENT PLASMA WAKE FIELD (PWF) EXCITATION

LONG REL. CHARGED-PARTICLE BEAM = COLD PLASMA = PWF
traveling along z-axis (active medium) excitation
4
T PLASMA ELECTRIC FIELD
F, = —V U, <— | wiTHARADIAL PROFILE
(PWF-driven plasma wake)
= PARAXIAL BEAM

NON-LAMINAR BEAM: finite temperature/emittance
LONG BEAM LIMIT: g, >> lp
PRESENCE OF A STRONG EXTERNAL UNIFORM MAGNETIC FIELD: B, // z

- Self-consistent beam-plasma interaction or beam self-modulation



J BASIC ASSUMPTIONS ON PLASMA + CHARGED PARTICLE BEAM

® Plasma

@ Collisionless

@ Magnetized: strong constant and uniform external magnetic field
(Bo= Bye,)

@ Overdense regime: Ny >>n,
Ny = unperturbed plasma density
N, = unperturbed beam density

@ Theions are supposed infinitely massive and constitute a background
of positive charge with density n,

@ Electron/positron Beam
@ Relativistic, travelling along the magnetic field
@ The beam length is much greater than the plasma wavelength
(long beam limit)

The entire beam experiences the effects of the plasma wake fields (PWF)

that itself has produced (self interaction)



J PLASMA MODEL: THE LORENTZ-MAXWELL SYSTEM
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@ We express E and B in terms of the 4-potential (A,9) and linearize the
system “plasma + beam” by introducing small perturbations

[P. Chen, Part. Accel. 20, 171 (1987), P. Chen, J. J. Su, T. Katsouleas, S. Wilks, and J. M.
Dawson, |IEEE Transactions on Plasma Science 15, 218 (1987)]

@ We transform all the system of equations to the beam co-moving
frame & = z-fct = z-ct (f = 1)

@ We split p and A into the longitudinal and transverse components, viz.,
Pp=zp,+p,A=ZA,+A,



J POISSON-TYPE EQUATION
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J BEAM DYNAMICS: SINGLE BEAM-PARTICLE HAMILTONIAN

@ The relativistic single-particle Hamiltonian associated with the
perturbed transverse dynamics of the beam including external

magnetic field + interaction with plasma, can be expressed in terms
of the four-potential (A, ¢):
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Effective single-particle Hamiltonian
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J Classical domain: Vlasov — Poisson-type system of equations
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\ N = number of beam particles /
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d Quantum-like domain: Thermal Wave Model (TWM)

@ [t provides an effective description of the transverse
dynamics of a relativistic charged particle beam, of
transverse emittance ¢, in terms of a complex wave
function W(r, ¢), called beam wave function (BWF), whose
squared modulus is proportional to the beam density, i.e.,

Pb(ru £)x |\P(ru @lz
@ According to TWM the following Schrédinger-like equation
for BWF can be assumed:

W
ieg—g = H (rp,—1eV, &)WV

[R. Fedele and G. Miele, /I Nuovo Cimento D 13, 1527 (1991)]




» Mixing among the electron rays: in vacuo and absence of forces

The dispersion among the particle trajectories (electron rays) is due to
the thermal agitation (thermal spreading). If the thermal velocity is much
smaller than the speed of light, the beam is paraxial and the mixing of the

electron rays provides a picture fully similar to one of the light ray mixing
due to the paraxial diffraction.




» Qualitative envelope evolution of a cilindrically-symmetric Gaussian
beam propagating in vacuo




J Quantum-like paraxial diffraction

igZ—T:—%vj\ﬂu(x, Y, 7 )P
o0y = €
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It can be proven that, if Ai(t) is the instantaneous area
occupied by the beam in the 2D subspace (qi,pi), the
following identification holds:

= A0

> 0




d  Quantum-like domain: Schradinger — Poisson-type system of
equations or Zakharov-type system of equations
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d Classical vs quantum-like
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J  Wigner quasidistribution and von Neumann equation
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Due to the Q.L. uncertainty relation, W can become negative,
which corresponds to a loss of information in phase space cells
of the order of the emittance



J Virial description for both classical and quantum-like domains
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d  Constants of motion and envelope description
1, | N 1

l
d’o? 2 2

Ao = N/noyyoo

C 1
» Cylindrical symmetry: A =C - SkeL- = new constant
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d Self-modulated beam envelope dynamics
R. Fedele, T. Akhter, D. Jovanovic, S. De Nicola and A. Mannan, Eur. Phys. J. D (2014) 68: 210
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» k.o > 1  PURELY LOCAL REGIME
' o Criteria for collapse, betatron oscillations and

self-equilibrium established
By # 0 o Concept of Gaussian beam equivalent introduced
2 ~
d20'2 d o ~ A()
= +4K0'i = 4A W —— TKOC—-— =
dt? dt

7
analog of the beam emittance A, = 25° ( A — % 52— % k@fl)

O + Sagdeev potential method




d Self-modulated beam envelope dynamics

R. Fedele, A. Mannan, S. De Nicola, D. Jovanovic and T. Akhter, Eur. Phys. J. D (2014) 68: 271;
R. Fedele, D.Jovanovi¢, F. Tanjia, S. De Nicola, Nucl. Instr. Meth. Phys. Res.A 740 (2014) 180-185

» kso| > 1 o STRONGLY NONLOCAL REGIME
o Criteria for collapse, self-defocusing/self-focusing
and self-equilibrium established
o Concept of Gaussian beam equivalent introduced

Bg=0
d20'%_ d26' AO
o ™ e EmT0

1 _,
analog of the beam emittance A\ = Yom (ﬂ — 55— 2)



d Self-modulated beam envelope dynamics

T. Akhter, R. Fedele, S. De Nicola, F. Tanjia, D. Jovanovic and A. Mannan, Self-modulated

dynamics of a relativistic charged particle beam in plasma wake field excitation, Nucl. Instr.
Meth. A, to appear (2016)

D. Jovanovic, R. Fedele, F. Tanjia, S. De Nicola, and M. Belic, EPL, 100 (2012) 55002
R. Fedele, F. Tanjia, S. De Nicola, D. Jovanovi¢, and P. K. Shukla, Phys. Plasma 19, 102106 (2012)

> k‘S o < 1 o Criteria for betatron oscillations and self-
equilibrium established
o Collapse prevented
o Stabilizing role of the magnetic field

» General case, including L o ~ 1

o Self-modulation instability in plasma wake field
accelerator predicted

o Stabilizing role of the magnetic field
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Quantumlike corrections and semiclassical description of charged-particle beam transport

R. Fedele* and V. I. Man’ko’
Dipartimento di Scienze Fisiche, Universita di Napoli ‘‘Federico II’’
and INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, I-80126 Napoli, Italy
(Received 6 October 1997)

It 1s shown that the standard classical picture of charged-particle beam transport in paraxial approximation
may be conveniently replaced by a Wigner-like picture in a semiclassical approximation. In this effective
description, the classical phase-space equation for electronic rays 1s replaced by a von Neumann-—Ilike equation.
where the transverse emittance plays the role of 7. Relevant remarks concerning the quantumlike corrections
for an arbitrary potential in comparison with the standard classical description of the beam transport are given.

[S1063-651X(98)07506-0]
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The fluid theories generated in classical and quantum-like domains, respectively, are
indistinguishable up to the third-order moments
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Role of semiclassical description in the quantumlike theory of light rays

R. Fedele* and V. L. Man’ko'
Dipartimento di Scienze Fisiche, Universita di Napoli “‘Federico II'’ and INFN Sezione di Napoli,
Complesso Universitario di M. S. Angelo, Via Cintia, I-80126 Napoli, Italy
(Received 29 December 1998: revised manuscript received 1 July 1999)

An alternative procedure to the one by Gloge and Marcuse [J. Opt. Soc. Am. 59, 1629 (1969)] for perform-
mg the transition from geometrical optics to wave optics m the paraxial approximation 1s presented. This 1s
done by employing a recent ‘‘deformation’’ method used to give a quantumlike phase-space description of
charged-particle-beam transport i the semiclassical approximation. By taking into account the uncertamnty
relation (diffraction limit) that holds between the transverse-beam-spot size and the rms of the light-ray slopes,
the classical phase-space equation for light rays is deformed into a von Neumann—like equation that governs
the phase-space description of the beam transport i the semiclassical approximation. Here, fi and the time are
replaced by the inverse of the wave number, X. and the propagation coordinate. respectively. In this frame-
work, the corresponding Wigner-like picture 1s given and the quantumlike corrections for an arbitrary refrac-
tive mndex are considered. In particular. it 1s shown that the paraxial-radiation-beam transport can also be
described in terms of a fluid motion equation. where the pressure term is replaced by a quantumlike potential
m the semiclassical approximation that accounts for the diffraction of the beam. Finally. a comparison of this
fluid model with Madelung’s fluid model is made. and the classical-like picture given by the tomographic
approach to radiation beams is advanced as a future perspective. [S1063-651X(99)18110-8]




d Quantum-like corrections and role of the dispersion
(sort of deformation method)

- | The thermal spreading

n=€/20y=vy/c<1

B o o B among the electron rays

WPy TP Ulx+92)~Ulx—92) dpv _ = causes a loss of infomation

Jz ox 7 ap in the phase space cells of
the order of emittance

| Ul (x+(in/2)d/dp)— Ul (x—(in/2)dldp)__
in dp in Pw

Since we have:

UG+ (in/2)d/ dp)—UR—(in/2)d/dp) = (aU/dx)in(d/dp)+ O( 5> 3/ dp?)

the above approximation is equivalent to assume that terms O (°#*/9p*)
are small corrections (semiclassical approximation).



d Landau-type damping and role of the dispersion

R. Fedele, P.K. Shukla, M. Onorato, D. Anderson, M. Lisak, Physics Letters A 303 (2002) 61-66;
R. Fedele, Phil. Trans. R. Soc. A (2008) 366, 1717-1733

Linearization: | |

pul,p,s) = po(p) + pi(x, p,s)

Ulx,s) = Uy + Up(x,s) = Up(x,s)
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