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Pressure/temperature anisotropy in collisionless plasmas 

 Second-order moment anisotropies, play a prominent role in many low-collision plasma 
processes (pressure-driven instabilities, magnetic reconnection, turbulence). 

[ P. Hellinger et al., GRL 33, 
L09101 (2006) ]

See, e.g., [ H.-J. Cai et al., 
PoP 4, 509 (1997) ]

 [S.Servidio et al., PRL, 
108, 045001 (2012)]  

 In most cases the origin itself of second order moment anisotropy is still debated.

 Sometimes (e.g. solar wind) pressure anisotropy appear to be correlated with flows.



  

Outline

 Full pressure tensor evolution :  
    i)  model equation 
    ii) kinematics and role of the fluid strain 

 Fluid strain as a source of pressure anisotropization : 
    i)    equation for the evolution of the agyrotropy 
    ii)   eigenmode analysis (at fixed fluid and magnetic fields)

  Fluid description of Weibel-type instabilities :
  i)    model
  ii)   a few insights from the fluid description

 Gyrotropic and non-gyrotropic anisotropy

 Example : shear-driven ion anisotropization : 
    i)    extended Hall-MHD model with cold mass-less electrons 
    ii)   numerical results
    iii)  normal modes of the system and role in the evolution of the anisotropy
    iv)  anisotropic equilibrium solutions
    v)   implications for turbulence

  A few remarks on the rôle of the heat flux  

  Summary and conclusions



  

Mathematical model

 Taking the second anisotropic moment from Vlasov equation :

gyration due to the magnetic field

advection compression strain

gradient of the triadic 
heat-flux tensor

n=2 n=3

+
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« Kinematic » dynamics of the pressure tensor 

isotropic 
compression

compressionless deformation without 
rotation   (rate of shear)

rotation 
(vorticity)

 Three kinds of mechanical deformations are possible because of the fluid strain :
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« Kinematic » dynamics of the pressure tensor 

 Three kinds of mechanical deformations are possible because of the fluid strain :

advection isotropic 
compression

Anisotropization

rotation (depending on the 
sign   of    ω·B  )

|ω|~2Ω resonances

 The  traceless strain D  can modify the internal energy of the plasma  tr{Π}/2 independently 
from isotropic compressions :



•  The commutator term [W+B, Π] mixes the components of the pressure tensor by  
     contributing to gyrotropy in the plane of rotation.

Gyrotropic and non-gyrotropic anisotropy (agyrotropy)

Gyrotropic anisotropy

Agyrotropy 
(non-gyrotropic anisotropy)

=
Rz(θ)

•   We refer the pressure tensor in the perpendicular plane  to its principal axes

Bz 

Vy 

Ex. :•   For simplicity we assume   ω  ||  B  ||  ez .



•   Assuming a 2D space dependence (∂z=0) we define :

Fluid strain as a source of pressure anisotropization 

•  An equation for  θ and one for  An.g.  can be obtained :

●  An.g. increases when the principal axes of Π⊥ and D are dephased by an angle 
  π/4< θ < π/2.

●   A slowly varying velocity strain induces a net agyrotropy in the in-plane pressure with 
    an angular shift of π/2.  The maximum rate of agyrotropy increase is for  θ - ϕ = π/2.

(Sign of  B·ω)



  

●  Looking for eigenvalue solutions of the pressure tensor equation at fixed density, velocity      
   and magnetic field with

(The sign of Ω' depends from the sign of   B·ω!)

three eigenvectors are found :

•  Exponential growth of the anisotropy  for over   t ~

Fluid strain as a source of pressure anisotropization 

V0=-1.5 B0=1



  

Ex. : shear-driven ion-anisotropy generation 

●  Consider  the set of Hall-MHD equations for cold, mass-less electrons

●  The shear-driven pressure tensor anisotropisation  is  ``limited''  by the self-consistent 
  evolution of the plasma that conserves the total energy  

and allows the  propagation of linear modes  (magneto-acoustic modes  and «magneto-
elastic » modes corresponding to m=2 ion-Bersntein waves).

●   These influence the time evolution of the spatial inhomogeneities that anisotropically 
   distribute among the pressure tensor components



  

i)   Energy conservation constraints the  ”anisotropization instability” 

iii)  The coupling with MHD equations introuces a third parameter. 

ii)   The extent of the shear-induced effects depends from the relative magnitude of the 
       parameter  c

H
/(LΩ).   Anisotropization requires  c

H
/(LΩ) to be not negligible.

Ex. : shear-driven ion-anisotropy generation 
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●   Lower branch (LFB)     →     consistent with the full-kinetic magnetosonic wave.

●  Higher branch (HFB)     →     consistent with the  ion-Bernstein  m=2 mode, but for the 
  dispersion at small kdi (the error, numerically negligible by comparison with Vlasov for 
  small kρi , does not influence the argument about the anisotropisation).

●   Two branches are excited at propagation perpendicular to a uniform magnetic field :

(LFB)

(HFB)

Fluid + tensor :

Vlasov-Maxwell :

Shear-driven ion-anisotropy generation : normal modes



  

Shear-driven ion-anisotropy generation : normal modes

●  Both the LFB and HFB contribute to the evolution of ux(x), where the initial 
cancellation is removed as time evolves with the LFB component propagating outwards.

●    Initial perturbation u =(0, uy(x), 0)  <=> superposition of the two branches with equal    
    and opposite ux amplitudes

●  The time evolution of u0
y(x) →  mainly determined by the HFB :  vg,h∼(kdi)c⊥

2/cA 



  

Shear-driven ion-anisotropy generation 

●  The anisotropization induced  by a velocity shear with a spectral   distribution
  at  kdi << 1   occurs in a time   ~  τH   and  persists  over a time   ∼ cA /( kc⊥

2 ).

●   For   τH /τ
B
 = 1,  the  initial agyrotropy is generated over a time scale ∼ L

H
 /c

H
. Only  

   a fraction (< kdi ) of the initial perturbation u0
y (x) is redistributed by  the LFB on the 

  characteristic Alfven time of the configuration,  while the HFB takes a time  di/vg,h∼   

  cA / (kc⊥
2 ) ≫ di /cA = τB  to displace the initial velocity profile  by a distance equal  to 

  its characteristic size, di . 



  

Ex. : shear-driven ion-anisotropy generation at L~ di 

●  Steady solutions of the full pressure tensor equation, 

can be used to obtain equilibrium configurations for the other fluid moments   
numerically or perturbatively for small anisotropies  [S.S. Cerri et al., PoP 2014].

<=> 

valid for



  

Shear-driven anisotropy generation  in turbulence

•  Discrepancies with respect to the CGL closure become important when τHΩc∼1.

•  For cH∼cA (Alfvenic turbulence) pressure anisotropies can be expected when velocity  
  inhomogeneities are generated in the plane  perpendicular to B at a scale     LH ∼ di.
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Shear-driven anisotropy generation  in turbulence

•  Discrepancies with respect to the CGL closure become important when τHΩc∼1.

•  For cH∼cA (Alfvenic turbulence) pressure anisotropies can be expected when velocity  
  inhomogeneities are generated in the plane  perpendicular to B at a scale     LH ∼ di.
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From the parameters 
of  [Servidio, 2012]:



  

Fluid description of Weibel-type instabilities

•  Consider a configuration of two counter-propagating, warm electron beams (label α), 
   possibly initially non-isotropic (bi-Maxwellian), in an neutralising ion background.



  

Fluid description of Weibel-type instabilities

•  For a null initial, total current density and perpendicular perturbations, the 
 configuration  is unstable to the   Current  Filamentation  Instability   (CFI)  
 [Fried, PoF, 1959].

•  On the other hand, a bi-maxwellian electron distribution is unstable to the 
  Weibel Instability (WI)  when  T

┴k
 > T ||k  [Weibel, PRL, 1959].

k

●  Considering two warm,  bi-maxwellian  electron  beams allows  to consider   the 
  coupled WI-CFI mode, by extending the full-pressure tensor analysis performed
  by [Basu, PoP, 2002] for the WI only in the strong anisotropy limit, T

┴k
 >> T ||k .



  

Fluid description of Weibel-type instabilities

●  Linearisation around a  homogeneous equilibrium for k=(kx, 0, 0)  gives results in good 
  agreement with the kinetic description in both the WI- and CFI- dominated regimes: 

WI-dominated

CFI-dominated



  

Fluid description of Weibel-type instabilities

●  A few non-trivial results of the fluid approach about interpretation of  known kinetic results
  [M. Sarrat et al., to be submitted 2016]. 

➢  We can understand in terms dynamical quantities the role played by thermal features in 
     coupling electrostatic effects to the normally purely e.m. CFI   [Tzoufras et al., PRL  
     2006],  [Bret et al., PoP  2007] 
   

➢  In the case of purely symmetric beams the coupled WI-CFI essentially consists of a 
    superposition of the two WI and CFI pure modes

for



  

Fluid description of Weibel-type instabilities

➢  It easily understood how pressure anisotropy make it possible the propagation of low-   
   frequency, transverse e.m. waves, which would otherwise be damped in an istropic 
   plasma 

N2 >0  also for

thanks to



  

A few comments on the heat flux

●  The closure condition on the heat flux (and of higher order moments) seems to strongly 
  depend on the specific problem considered :

Ex. :

➢  Shear-induced generation of ion anisotropy : 
  -) The neglect of div(Q) seems a priori reasonable for  k┴ >>  k||

    -) The full-pressure tensor model without heat-flux allows a consistent description of 
➢     the dispersion relation of  CGL-FLR corrections to the fast magnetoacoustic  mode 

     at perpendicular propagation. The inclusion of the first order  heat flux corrections 
     (~k4ρi

4)  just  allows to recover the exact coefficient of the  corresponding  Vlasov-
     Maxwell dispersion relation.

➢  Pressure tensor description of the Weibel Instability in a fluid model : 
  -) Without div(Q) a good agreement with the kinetic dispersion relation is obtained, 
      as long as we are not close to the threshold condition (anisotropy approaching 1), 
      also as far as the kinetic cut-off wave-length is concerned.  
  -) When the heat-flux correction are included, the cut-off at large wave-number is 
      lost. Contributions related to the fourth order moment should be probably kept into 
      account (see [P.L. Sulem, T. Passot, JPP 2015]).



 Conclusions

● Pressure anisotropization may be induced by a velocity shear  through the action of the 
strain tensor. Anisotropization is at maximum when the major principal axes of the fluid 
strain and of the pressure tensor are orthogonal one to each other, occurs over a time scale 
L/cH  , and the sign of the product ω·B  and  the magnitude of ratio  cH  

/(LΩ)  rule the 

process.  [D.Del Sarto  et al., PRE (2016)]
● The proposed mechanism, valid for both ions and electrons, seems a good candidate 

for the understanding of the correlation between velocity shear and non-gyrotropic 
anisotropization and has implications for plasma turbulence (-THOR measurements!). 
[D. Del Sarto et al., PRE (2016)]

● Stationary non-gyrotropic solutions can be devised, which strongly depend on the sign of 
ω·B    [S.S.Cerri et al., PoP 2014]. 

●  In the   case of ions,  the  anisotropization  induced  by  a  velocity   shear  with spectral   
  distribution at  kdi << 1   occurs in a time   ~  τH   and  persists  over a time   ∼ cA /( kc⊥

2 ), 
  due to the interplay with the normal modes that propagate in the plasma [D. Del Sarto et 
  al., PRE 2016; arxive:1509.04938]

●  A fluid description of Weibel instabilities is made possible by including the full-pressure     
  tensor evolution, which allows a better insight on different features of the instability [M. 
  Sarrat et al., to be submitted].   
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