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Introduction (1)

Vlasov equation
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Introduction (2)

Vlasov codes: powerful tool for studying in detail the
particle dynamics due to

• very fine resolution in phase space
• noiseless character (Raman scattering, BGK,…)
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Introduction (3)

. Questions for applications:
• Need for a kinetic model? What happens when

the phase space dimension is D>5 or even D>6
(general relativity or spin effects)

• Two complementary approaches:
• Need for efficient local advections for parallel

algorithms
• Need for Hamiltonian reduction techniques

(coupling)
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Canonical momemtum invariants (1)
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Let us come back to particle motion and consider the 
Hamiltonian of an electron in an electromagnetic field
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" #A = 0 $ A = A%
Using Coulomb gauge
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Caconical momentum invariants (2)

C0C-1C-2C-3 C1 C2 C3

F
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The full distribution function can be written as a sum
of Dirac delta masses
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Caconical momentum invariants (3)
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Now let us divide the electron population into a finite 
number jmax of groups j
Each group has the same perpendicular constant
canonical momentum Cj
The hamiltonian of the j-particles is

With the Lorentz factor
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The multi-stream (MS) model (1)

Several Vlasov equations

Lorentz factor
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MS model (2)

Several Vlasov equations

Source terms
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MS model: linear analysis of WI or CFI (1)

Water-Bag approach in       and multi-stream approach in        :
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. Questions for applications to Weibel Instability (WI)
and Current Filamentation Instability (CFI)

• Both instabilities are considered as basic processes
in plasmas associated with the generation of
magnetic fields

• The multi-stream model allows to « unify » CFI and
WI in a global approch
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MS model: linear analysis of WI or CFI (2)

The distribution function may be described as:

H is the Heaviside fstep
function and +pm  and -
pm are the limit values in
momentum

modified Lorentz factor
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MS model: linear analysis of WI or CFI (3)
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MS model: linear analysis of WI or CFI (4)

Normal modes analysis around an equilibrium:
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MS model: linear analysis of WI or CFI (5)

Longitudinal field
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MS model: linear analysis of WI or CFI (6)

General dispersion relation coonected to a matrix of type:

Coupling introduced by a disymmetry due to relativity and/or WB
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MS model: linear analysis of WI or CFI (7)

We impose the following conditions
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MS model: linear analysis of WI or CFI (8)

Dispersion relation of type:
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Description  of CFI using full Pressure
tensor dynamics:  j=2

Conservation density  for beam + plasma

Pressure
tensor

Others moments of f
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Tensor Pressure model: linear analysis of CFI (1)

Equilibrium of type (anisotropic pressure tensor):

« thermal » velocities:
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Tensor Pressure model: linear analysis of CFI (2)

General dispersion relation coonected to a matrix of type:

WI- CFI coupling by beam assymetry
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Tensor Pressure model: linear analysis of CFI (3)
dispersion relation

WI- CFI coupling by
beam assymetry! 
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Tensor Pressure model: linear analysis of CFI (4)

Cut-off wave-number
recovered
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An Example: 1D2V SL Vlasov-Maxwell
Simulation  for WI

We consider a 1D2V phase space using an
electron distribution function of type:
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We simulate the Weibel instability using a Backward Semi-
Lagrangian scheme for the resolution of the Vlasov equation in
1D2V phase space

For an anisotropy in temperature 1kev in Px  and 50keV in Py
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1D2V Vlasov-Maxwell simulation (1)

Phase space Px-Py
overview



28Vlasovia 2016, Copanello, Italy, May 30, June 2

1D2V Vlasov-Maxwell simulation (2)

Phase space x-Px
overview

Complex behavior even
in a simple case with 3D

phase space
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1D2V Vlasov-Maxwell simulation (3)

Phase space x-Py
overview

Complex behavior even
in a simple case with 3D

phase space:

Suggests that several
« beams » have been

selected by the plasma
of different magnetic

bounce frequencies

Phase space x-Py
overview

Complex behavior even
in a simple case with 3D

phase space:

Suggests that several
« beams » have been

selected by the plasma
of different magnetic

bounce frequencies
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 Using canonical invariants as diagnostics (1)

We consider a 1D2V phase space using an
electron distribution function of type:

We simulate the Weibel instability using a multi-stream model with
7 streams
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Using canonical invariants as diagnostics (2)

Multi-stream: growthrate
is found in

good agreement
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Using canonical  invariants as diagnostics (3)

Multi-stream
solver

SL-VM solver:
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Using canonical invariants as diagnostics (4)
F

C-2C-3 C0C-1 C1 C2 C3

For the central stream:
The dominant mode is 2
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Using canonical invariants as diagnostics (5)

C0C-1C-2C-3 C1 C2 C3

F

For the stream C1:
The dominant mode is 1
With the influence of

the mode 2
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Using canonical invariants as diagnostics (6)

C0C-1C-2C-3 C1 C2 C3

F
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For the last stream C3
(of very small density):
The dominant mode is 1

Rotation linked to the
value of C3
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Topics

1. Vlasov plasmas

2. Reduction techniques in a Hamiltonian framework
2.1 the multi-stream model
2.2 Pressure tensor dynamics

3. Application to the Weibel-type instabilities

4. ConclusionsConclusions
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ConclusionsConclusions

The multi-stream model is a set of kinetic Vlasov-
type equations obtained in a Hamiltonian framework
allowing to reduce the dimension of phase space

Two complementary approaches: SL VM solver and
multi-stream model

Semi-Lagrangian Vlasov codes applied for the study
of CFI and WI in the relativistic regime

•lack of numerical noise
•good resolution in phase space
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Comparison PIC-Vlasov (1)

Vlasov Codes 

: real space dimension

is the graininess due to particules

PIC Codes

 : momentum space 
dimension

 : sampling of momentum
space in each direction  

Sampling the x-space needs

Real space X momentum space
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Comparison PIC-Vlasov (2)

Assume the same CPU time 
•to push a particle (PIC)
•to move a phase space mesh point (Vlasov) 

The ratio of the computationnal effort between Vlasov and PIC
depends on
•PIC graininess (must be as low as possible)
•Sampling of momentum space (must be as high as possible)
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Comparison PIC-Vlasov (3)

Prefer PIC

Prefer Vlasov

10.010.0001gPIC =10-6

10010.01gPIC =10-4

10 0001001gPIC =10-2

Dv =3Dv =2Dv =1

What happens when
gPIC smaller
Availaible today?
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Complementary Approach

1. Vlasov plasmas

2. Reduction techniques in a Hamiltonian framework
2.1 2.1 adiabatic adiabatic invariantsinvariants
2.2 the multi-stream model
2.3 Pressure tensor dynamics

3. Application to the Weibel-type instabilities

4. Conclusions
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Adiabatic invariants (1)

• Each adiabatic invariant reduces the dimentionality by a factor two
and a trapped particle is fully described by the position of the
« banana center » (action-angle variables)
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d#k
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$Jk
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= 0 for k =1,2

In laser-plasma interaction: No really equivalent approach although
BGK waves (EAWs, KEEN waves) seem to play a major role
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Adiabatic invariants (2)
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The model allows us to study the coupling between streamers,
zonal flows et other types of structures acting in turbulence
(Kelvin-Helmholtz)

Zonal flow                                   streamer
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Adiabatic invariants (3)

« transition »
observed due to
the presence of
KH

Turbulence
induced by
trapped ion modes
(TIM)


