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Introduction (1)

Vlasov equation
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Introduction (2)

Vlasov codes: powerful tool for studying in detail
particle dynamics due to

+ very fine resolution in phase space
* noiseless character (Raman scattering, BGK,...)

the
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Introduction (3)

. Questions for applications:

 Need for a kinetic model? What happens when
the phase space dimension is D>5 or even D>6
(general relativity or spin effects)

+ Two complementary approaches:

* Need for efficient local advections for parallel
algorithms

* Need for Hamiltonian reduction techniques
(coupling)
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Canonical momemtum invariants (1)

Let us come back to particle motion and consider the
Hamiltonian of an electron in an electromagnetic field

1/2
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Using Coulomb gauge V-A=0 = A=A,
P.=p+eA, is the canonical momentum
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Caconical momentum invariants (2)

The full distribution function can be written as a sum
of Dirac delta masses

F(X,px:PLst) = E’?(X,Px,t) o[p. - (C;-eA,(x1))]
J
F
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Caconical momentum invariants (3)

Now let us divide the electron population into a finite
number j,.. of groups j
Each group has the same perpendicular constant
canonical momentum C;
The hamiltonian of the j-particles is

H; = mcz(yj — 1) +ep(x,t)
With the Lorentz factor

)/j(X’px’t)=

1+

2

Px

+(C;-eA (x,t))

mZc?

11/2

/)\,UL Zl_l El_ Vlasovia 2016, Copanello, Italy, May 30, June 2 @ 8




= The multi-stream (MS) model (1)

Several Vlasov equations P, =p+eA, =const=C,
2
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MS model (2)

Several Vlasov equations P, =p+eA, =const=C,
. p o 1 d(C,-eA,) |,
Ly Bx P4l eE — / L =0
o my; ox 2my ox op.,
n.(x,t)= [ f.(x,p,.t)dp,
Source terms > Tp
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MS model: linear analysis of WI or CFI (1)

. Questions for applications to Weibel Instability (WT)
and Current Filamentation Instability (CFI)

Both instabilities are considered as basic processes
in plasmas associated with the generation of
magnetic fields

The multi-stream model allows to « unify » CFI and
WT in a global approch

Water-Bag approach in p _and multi-stream approach in p,

ep)= S [(pe i) -1{ppd Jolos (€ -eAs)
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MS model: linear analysis of WI or CFI (2)

The distribution function may be described as:

: .. A f
H is the Heaviside fstep
function and +p,, and - A
P are the limit values in
momentum
\
V- Vs

2 (C. —eA (x,1))
modified Lorentz factor y; = 1+ pzx S+ J L( )
mc mc
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MS model: linear analysis of WI or CFI (3)

Transverse potential vector

Source terms

€

v fAD, =
J,. =%(Cj —eAl) _oofy. and  |n,(x,t)=[72 f:(x, p..t)dp,
J
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MS model: linear analysis of WI or CFI (4)

Normal modes analysis around an equilibrium:

*

p; =#*p,+0p;

n,=n, +on,

and

E =0FE and A =0A
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MS model: linear analysis of WI or CFI (5)
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MS model: linear analysis of WI or CFI (6)

General dispersion relation coonected to a matrix of type:

(D, D, 0)
[D] = ny Dyy 0
\ 0N O D)

Coupling introduced by a disymmetry due to relativity and/or WB
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MS model: linear analysis of WI or CFI (7)

We introduce a normalized density of « beam » j :

«;

_ 2pajF}

n,

We impose the following conditions
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MS model: linear analysis of WI or CFI (8)

Dispersion relation of type:
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Description of CFI using full Pressure
tensor dynamics: j=2

on .
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Tensor Pressure model: linear analysis of CFI (1

Equilibrium of type (anisotropic pressure tensor):

H(O)

« thermal » velocities:

Imposed conditions:
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ensor Pressure model: linear analysis of CFI (2)

General dispersion relation coonected to a matrix of type:

(D, D, 0)
[DJE=0 [D]=|D, /D, 0
.\ 0/ 0 D,

WI- CFI coupling by beam assymetry
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"ensor Pressure model: linear analysis of CFI (3)

dispersion relation
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"ensor Pressure model: linear analysis of CFI (4)
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An Example: 1D2V SL Vlasov-Maxwell
Simulation for WI

We consider a 1D2V phase space using an _
electron distribution function of type: ) f(X,px,py,t)

We simulate the Weibel instability using a Backward Semi-
Lagrangian scheme for the resolution of the Vlasov equation in
1D2V phase space

07f+ P .fo+(E+pr).fo=O
ot my my

For an anisotropy in temperature lkev in Px and 50keV in Py
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1D2V Vlasov-Maxwell simulation (1)

P,/mc

0.0
P./mc

Phase space Px-Py
overview
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1D2V Vlasov-Maxwell simulation (2)

w,.t=  30.0

i | : : Phase space x-Px
B | ———mmne " overview

Complex behavior even
in a simple case with 3D
phase space

P./mc
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1D2V Vlasov-Maxwell simulation (3)

wn.t=  30.0

Phase space x-Py
overview

P/mc

| Complex behavior even
| | . in a simple case with 3D
ﬂ = 1050 phase space:

f— ugges’rs that several

« beams » have been
selected by the plasma
: ; ; : of different magnetic
bounce frequencies
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Using canonical invariants as diagnhostics (1)

We consider a 1D2V phase space using an 7 (X t)
electron distribution function of type: j\X5 Py

We simulate the Weibel instability using a multi-stream model with
/ streams

2
¥, o ¥ | ] (C,-eA,) | o,
2my ox op,

X

ot my; ox

Coupled, in a self-consistent way, with Maxwell equations
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Using canonical invariants as diagnhostics (2)

00045 | Multi-stream: magnetic
| bounce frequency in good
£ oo agreement
00005 | | kc p, eB
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Using canonical invariants as diagnostics (3)
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Using canonical invariants as diagnostics (4)

P./mc

For the central stream:
The dominant mode is 2

P./mc
o
o
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Using canonical invariants as diagnostics (5)
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For the stream Cl:
The dominant mode is 1
With the influence of

the mode 2
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Using canonical invariants as diagnhostics (6)

P,/mc

P./mc

----------------
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— S Rotation linked to the

For the last stream C3
(of very small density):
The dominant mode is 1

value of C3
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Conclusions

Semi-Lagrangian Vlasov codes applied for the study
of CFI and WI in the relativistic regime

‘lack of numerical noise
-good resolution in phase space

The multi-stream model is a set of kinetic Vlasov-
type equations obtained in a Hamiltonian framework
allowing to reduce the dimension of phase space

Two complementary approaches: SL VM solver and
multi-stream model
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Comparison PIC-Vlasov (1)

Sampling the x-space needs ~ (L/ XD)dx d, : real space dimension

PIC Codes Viasov Codes
d, Real space X momentum space
Npart:nO(L) g ~d
L\*% Nyias~(L/Ap)™ N,
OVAD )‘-D ngicharthv
NL( /}\D)dx d, : momentum space
8 pic dimension
—1
d . .
.= [ na A X) : sampling of momentum
<k ( 07D N"space in each direction

is the graininess due to particules
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Comparison PIC-Vlasov (2)

Assume the same CPU time
*to push a particle (PIC)
to move a phase space mesh point (Vlasov)

CP Uv[ as d,

iCNV
CPU,. °"

The ratio of the computationnal effort between Vlasov and PIC
depends on

*PIC graininess (must be as low as possible)

-Sampling of momentum space (must be as high as possible)
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Comparison PIC-Vlasov (3) —

N, vias
N part

D, =1 D, =2 D, =3

—102
Ipic=10 Prefer PIC

at happens when
gprc Smaller
Availaible today?

Prefer Vlasov
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Adiabatic invariants (1)

» Each adiabatic invariant reduces the dimentionality by a factor two
and a trapped particle is fully described by the position of the
« banana center » (action-angle variables)

wk_dqbk_dH
dt dJ,
%=O for k=12
dt

In laser-plasma interaction: No really equivalent approach although
BGK waves (EAWSs, KEEN waves) seem to play a major role
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Adiabatic invariants (2)

@[‘K,E +(1)d(K;S)E 0'.7[‘K,E + é)JoU #K,E _ é)JoU 0’.7[‘K,E —
ot 0p;  dY dp;  dpy Y

Which is coupled with  |C{U = (U), } - CaV*U = n(¢y..1) - 1

0

The model allows us to study the coupling between streamers,
zonal flows et other types of structures acting in turbulence
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twgo =~ 13.58

P

t(.dd() ~ 1T3.71

(7

Adiabatic invariants (3)

523

N « transition »
observed due to
the presence of

1.0604 Kl |
0401

Turbulence
induced by
trapped ion modes
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