

Interplay of collisional and turbulent transport processes

X. Garbet CEA/IRFM Cadarache

Acknowledgements: J-H. Ahn, Y. Asahi, C. Bourdelle, N. Bouzat, S. Breton, P. Donnel, C. Ehrlacher, D. Esteve, G. Dif-Pradalier, P. Ghendrih, R. Guirlet, V. Grandgirard, G. Latu, Y. Sarazin, D. Zarzoso

• Orders of magnitude in tokamaks (ions)

$$D_{cl} = \nu_{coll} \rho_c^2 \simeq 0.01 m^2 s^{-1}$$

$$D_{neo} = D_{cl} \times \text{geometrical factor} \simeq 0.1 m^2 s^{-1}$$

$$D_{turb} = \frac{v_T}{a} \rho_c^2 \simeq 1 m^2 s^{-1}$$

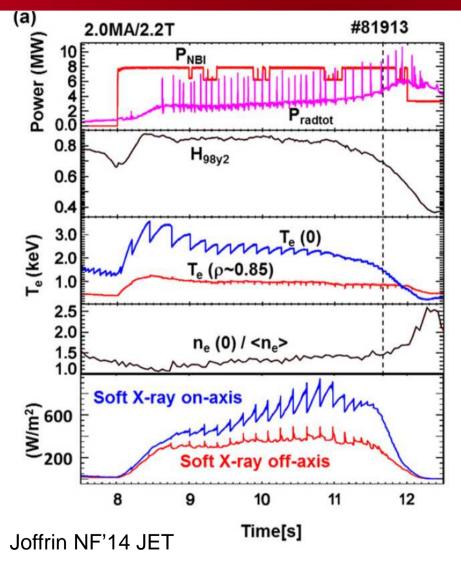
- Neoclassical= collisional transport enhanced by geometry and resonant processes
- Two consequences
 - $D_{neo} \ll D_{turb} \rightarrow \text{collisional transport is often neglected}$

- When calculated, neoclassical and turbulent fluxes are considered as additive and uncorrelated.

Cea

Why is collisional transport back on scene?

- Tungsten plasma facing components
 → renewed interest in collisional transport
- Tendency to accumulate in the plasma core
- Neoclassical transport coefficients are enhanced by poloidal asymmetries
 Romanelli 98, Helander 98, Fülöp 99,
 Casson 14, Angioni 14, Belli 14, Breton 16
- Momentum transport is sensitive to collisional processes Parra 10, Barnes 13, Idomura 14



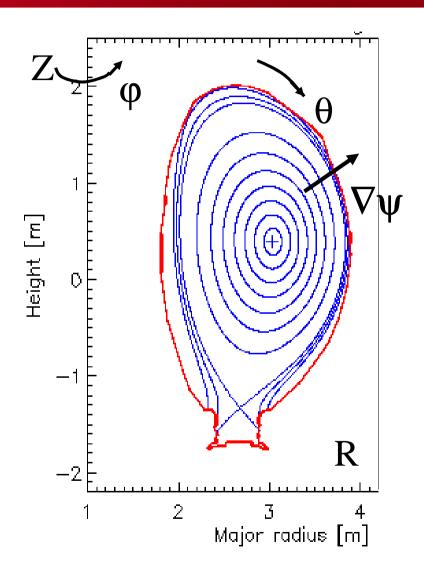
Outline

Is there an interaction between neoclassical (≈collisional) and turbulent transport?

- 1) Relationship between collisional transport and flow symmetries
- 2) Recent results
- 3) Anti-correlation of fluxes: artefact or fact?

What do you have to know about tokamak plasmas?

- Weakly collisional plasmas in a toroidal magnetic configuration
- Field lines generate magnetic surfaces ψ(R,Z)=cte
- "Modes" ~ $e^{i(n\phi+m\theta)}$
- n,m: toroidal and poloidal wave numbers
- n=0: axisymmetric modes



Gyrokinetic approach is the appropriate framework to compute collisional and turbulent transport

Gyrokinetic Fokker-Planck equation

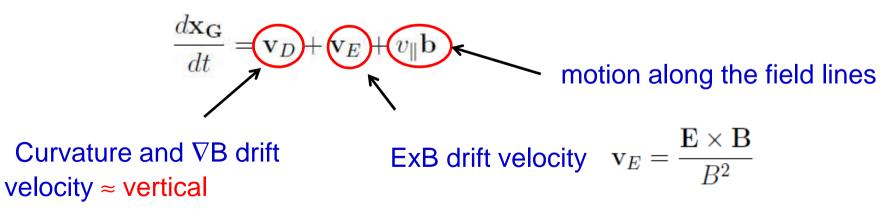
Coordinates
$$\mathbf{z} = (\mathbf{x}_{\mathbf{G}}, \mathbf{v}_{//}, \mu)$$

+ Maxwell equations

 $\frac{\partial F}{\partial t} + \frac{1}{J} \frac{\partial}{\partial \mathbf{z}} \cdot \left(\frac{d\mathbf{z}}{dt} \right)$

Multi-species collision operator, Catto 77, Xu & Rosenbluth 91, Brizard 04, Abel 08, Sugama 08, Belli 08, Esteve 15

• Guiding-center velocity

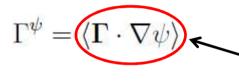


Radial fluxes: diffusion and pinch velocities

• Particle flux

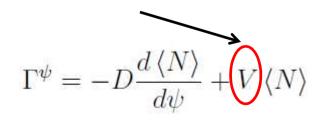
$$\mathbf{\Gamma} = \int d^3 \mathbf{v} F(\mathbf{v}_D + \mathbf{v}_E + v_{\parallel} \mathbf{b})$$

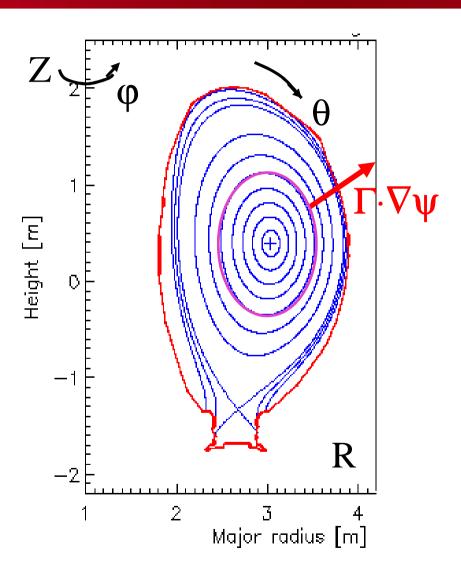
• Look for fluxes vs gradients, e.g.



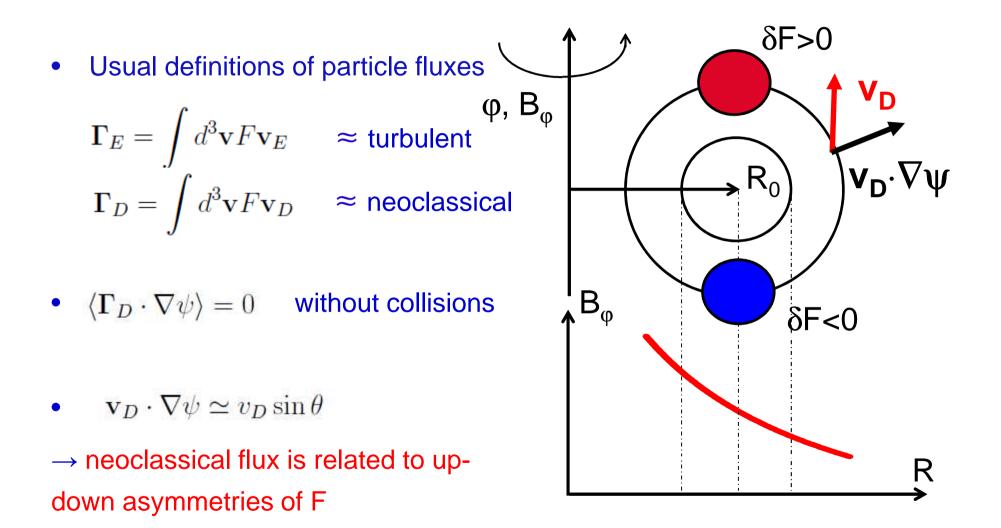
average over magnetic surfaces

- Multi-species → several thermodynamic forces
- \rightarrow pinch velocity





How can turbulence and collisional contributions be identified ?



Collisional particle fluxes are proportional to the parallel drag force

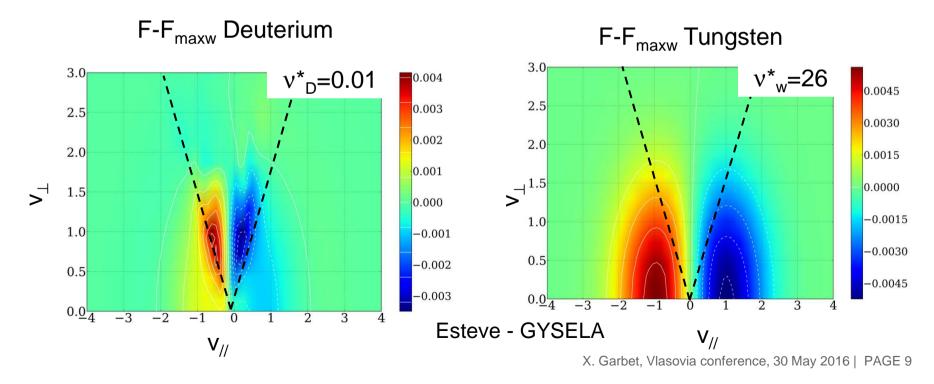
Neoclassical flux

$$\Gamma^{\psi} = -\frac{B_T R}{e} \left\langle \frac{R_{\parallel}}{B} \right\rangle$$

 $R_{\prime\prime}$ is the collisional drag force

$$R_{\parallel} = \int d^3 \mathbf{v} m v_{\parallel} C(\mathbf{F})$$

• Depends on the shape of the distribution function in phase space

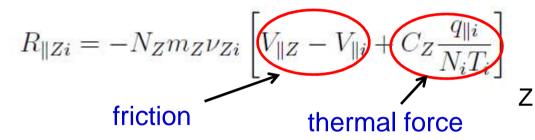


DE LA RECHERCHE À L'INDUSTRIE

Neoclassical transport is related to large scale flow cells

 $B_T R$

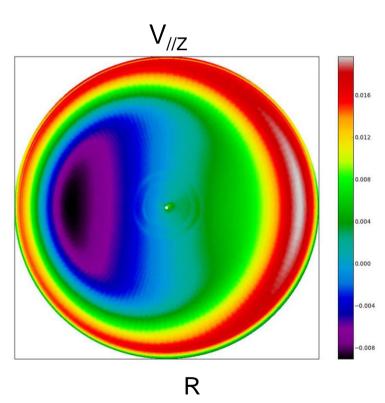
• Fluid drag force (impurities)



 Pfirsch-Schlüter convection cell due to perpendicular compressibility Pfirsch & Schlüter 1962, Hinton & Hazeltine 76

$$\nabla\cdot \boldsymbol{\Gamma}=0$$

• Relates parallel flows to perp. gradients



depends

on θ

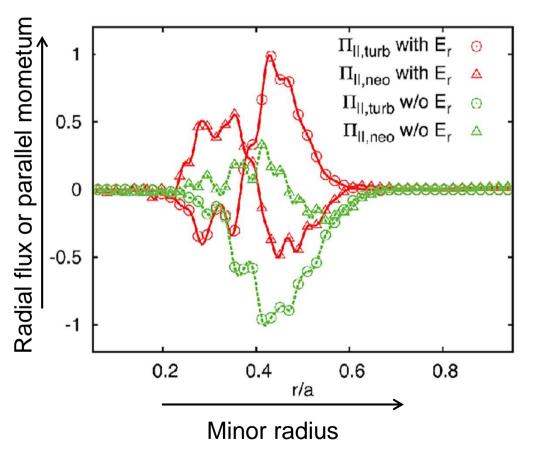
- Interplay via kinetic processes : turbulence responsible for scattering in the velocity space McDevitt 13
- Interplay via large scale flows:
- mean flows: i) neoclassical flow → stress tensor → toroidal spin-up Parra 10,
 Barnes 13, ii) turbulence → stress tensor → poloidal spin-up Dif-Pradalier 09
- zonal flows sensitive to collisions Vernay 12, Oberparleiter 16
- poloidal flow asymmetries \rightarrow modify fluxes Esteve 16
- Anti-correlated fluxes: toroidal momentum Abiteboul 11, Idomura 14, particles Esteve 16, heat transport near threshold Vernay 12

Momentum transport

 Near cancellation of neoclassical and turbulent momentum fluxes of parallel momentum Abiteboul 11, Idomura 14

$$\begin{split} \Pi^{\psi}_{E\parallel} &= m \int d^3 \mathbf{v} F v_E^{\psi} v_{\parallel} \\ \Pi^{\psi}_{D\parallel} &= m \int d^3 \mathbf{v} F v_D^{\psi} v_{\parallel} \end{split}$$

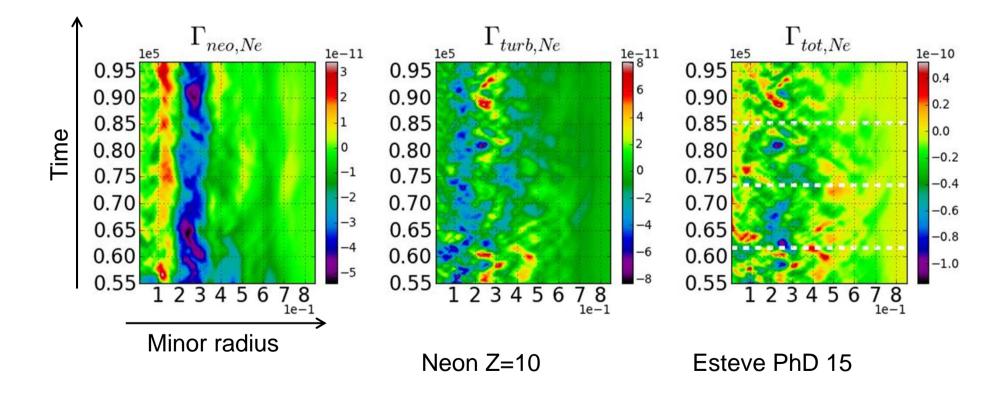
• Seems to be related to the mean radial electric field



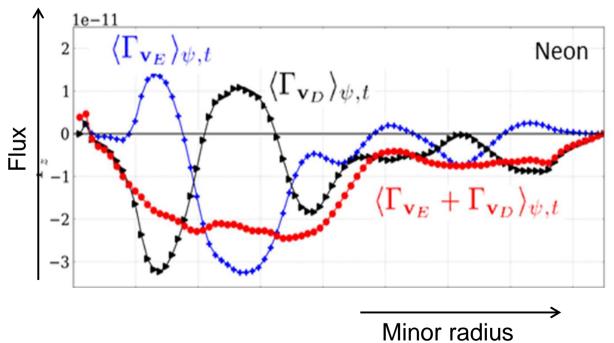
Idomura 14

Particle transport

- Competition at medium Z: neoclassical ≈ turbulent transport.
- Negative correlation of turbulent and neoclassical fluxes



- Anti-correlation quite visible for medium Z impurities
- Less pronounced for high Z particles



Esteve PhD 15

Components of the turbulent Reynolds stress are correlated

 Mean radial and parallel wavenumbers are correlated for a given symmetry breaking mechanism

 Correlated turbulent fluxes of poloidal and parallel momentum

n



A quasi-linear calculation predicts anti-correlated momentum fluxes

Esteve 15

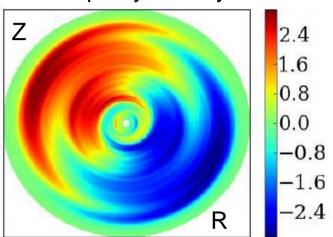
- Turbulence intensity is inhomogeneous in the poloidal plane
- \rightarrow Reynolds stress is modulated
- \rightarrow poloidal asymmetries of $\ensuremath{\mathsf{E}{\times}\mathsf{B}}\xspace$ flow \rightarrow F
- \rightarrow neoclassical flux of parallel momentum

$$\Pi^{\psi}_{D\parallel} = m \int d^3 \mathbf{v} F v^{\psi}_D v_{\parallel}$$

• Correlated radial fluxes of parallel momentum

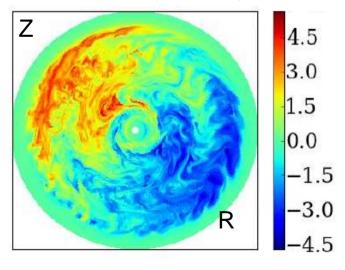
 $\Pi_{D\parallel}^{\psi} = qm \sum_{\mathbf{k}} |v_{E\mathbf{k}}|^2 \theta_{\mathbf{k}}$ $\Pi_{E\parallel}^{\psi} = -\pi m \sum_{\mathbf{k}} \tau_{\mathbf{k}} (\mathbf{k} \cdot \mathbf{v}_D) |v_{E\mathbf{k}}|^2 \theta_{\mathbf{k}}$ Anti-

n=0 impurity density



n≠0 impurity density

Х



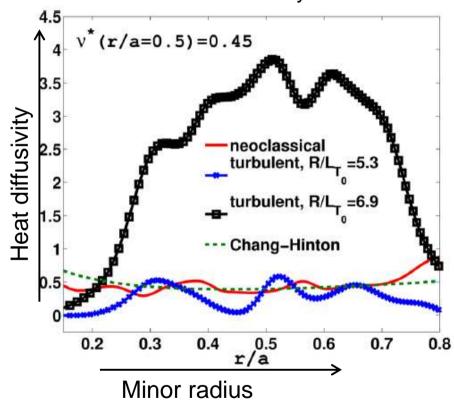
Conclusion

- Interplay of collisional and turbulent transport several possible reasons:
- diffusion in the velocity space \rightarrow anisotropy of the distribution function
- large scale flows: mean, zonal and poloidal asymmetries
- Indications of anti-correlated neoclassical and turbulent fluxes
- effect is large for momentum flux, moderate for particle flux (Z dependent), small for heat transport
- likely related to poloidal asymmetries of the flow
- can be explained by quasi-linear theory

Non additivity of ion diffusivities
 Vernay 12

 $\chi_{H}^{\mathrm{tot}}(\nu^{*}) > \chi_{H}^{\mathrm{turb}}(\nu^{*}=0) + \chi_{H}^{\mathrm{neo}}(\nu^{*})$

- Explained by the effect of collisions on zonal flow dynamics
- Some hint of anti-correlated fluxes.



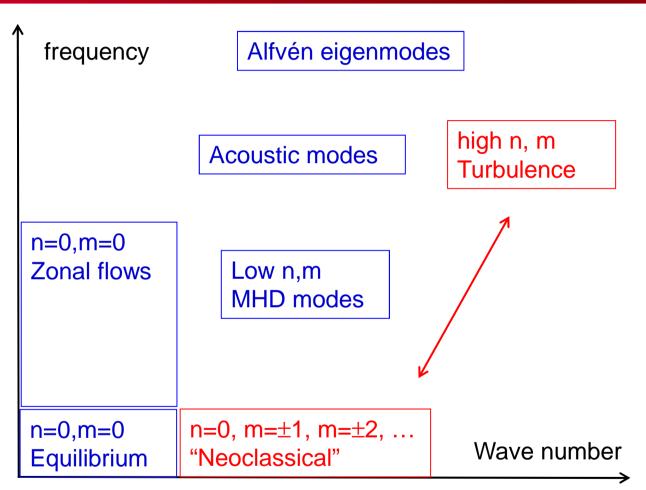
Vernay 12

Scale separation and additivity principle

 Disparate scales in a tokamak

- Multiscale problem
- Scale separation → fluxes are additive

$$\Gamma_{\psi} = \Gamma_{\psi,neo} + \Gamma_{\psi,turb}$$



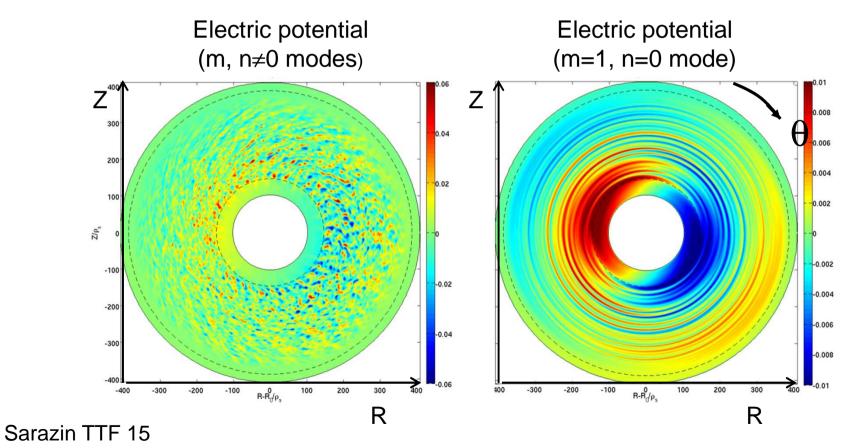
n,m = toroidal, poloidal wavenumbers

Collision operator

$$\begin{split} C_{ab} &= C_{v,ab} + C_{d,ab} + C_{R,ab} + C_{\parallel,ab} + C_{pol,ab} \\ C_{v,ab}(\bar{F}_{a}) &= \frac{1}{2} \frac{1}{B_{\parallel}^{*}} \frac{1}{v_{\perp}} \frac{\partial}{\partial v_{\perp}} \left[B_{\parallel}^{*} F_{M0a} \nu_{v,ab} v_{\perp}^{2} \left(v_{\perp} \frac{\partial \bar{g}_{a}}{\partial v_{\perp}} + v_{\parallel} \frac{\partial \bar{g}_{a}}{\partial v_{\parallel}} \right) \right] \\ &+ \frac{1}{2} \frac{1}{B_{\parallel}^{*}} \frac{\partial}{\partial v_{\parallel}} \left[B_{\parallel}^{*} F_{M0a} \nu_{v,ab} v_{\parallel} \left(v_{\perp} \frac{\partial \bar{g}_{a}}{\partial v_{\perp}} + v_{\parallel} \frac{\partial \bar{g}_{a}}{\partial v_{\parallel}} \right) \right] \\ C_{d,ab}(\bar{F}_{a}) &= \frac{1}{2} \frac{1}{B_{\parallel}^{*}} \frac{1}{v_{\perp}} \frac{\partial}{\partial v_{\perp}} \left[B_{\parallel}^{*} F_{M0a} \nu_{d,ab} v_{\perp} v_{\parallel} \left(v_{\parallel} \frac{\partial \bar{g}_{a}}{\partial v_{\perp}} - v_{\perp} \frac{\partial \bar{g}_{a}}{\partial v_{\parallel}} \right) \right] \\ &+ \frac{1}{2} \frac{1}{B_{\parallel}^{*} \partial v_{\parallel}} \left[B_{\parallel}^{*} F_{M0a} \nu_{d,ab} v_{\perp} \left(-v_{\parallel} \frac{\partial \bar{g}_{a}}{\partial v_{\perp}} + v_{\perp} \frac{\partial \bar{g}_{a}}{\partial v_{\parallel}} \right) \right] \\ &+ \frac{1}{2} \frac{\partial}{B_{\parallel}^{*} \partial v_{\parallel}} \left[B_{\parallel}^{*} F_{M0a} \nu_{d,ab} v_{\perp} \left(-v_{\parallel} \frac{\partial \bar{g}_{a}}{\partial v_{\perp}} + v_{\perp} \frac{\partial \bar{g}_{a}}{\partial v_{\parallel}} \right) \right] , \\ &C_{\parallel,ab}(\bar{F}_{a}) = -\nu_{s,ab} \frac{m_{a}}{T_{a}} \langle \mathbf{v} \cdot (\mathbf{U}_{d,a} - \mathbf{U}_{ba}) \rangle_{\gamma} F_{M0a} \\ &\bar{g}_{a} = \bar{f}_{a} - \frac{m_{a}}{T_{a}} \langle \mathbf{v} \cdot \mathbf{U}_{d,a} \rangle_{\gamma} - \frac{m_{a} v^{2}}{2T_{a}} J \cdot q_{ba} \end{split}$$

Poloidal asymmetries of the flows seem to be involved

• Momentum sources + Reynolds stress drive flow poloidal asymmetries



X. Garbet, Vlasovia conference, 30 May 2016 | PAGE 21

Collision operator

