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Context: the Fishbone instability

>

First observation on the
PDX tokamak, with near
perpendicular neutral beam
injection active

Bursts of electromagnetic

instability , associated with
losses of fast particles

Mode frequency consistent
with trapped fast ion
precession frequency
Dominant m=n=1,
kink-shaped, mode structure
Observation of frequency
chirping
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Figure : [McGuire et al., PRL, 1983]



Trapped particle trajectories (passing are confined too!)
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Divertor
Targets

> We > Whounce > Wprecession — possible decoupling of the three dynamics:
Full kinetic, Gyrokinetic or Bounce-averaged descriptions

> For elegant derivation, using Lie algebra, see [Littlejohn, PS, 1982]
(X, V) — (X867 VH?(JCvCC)) W<<Wc (cha Vi J )
wLw,
(Xees viji Je) = (@, B, (I €)i Je) = (i, Bi Jj, Je) = ((py Go)i I, Je))



The small "inverse aspect ratio” Tokamak

magnetic surface

) ) / . A
[ ~ 6
magnetic axis

> c=a/RhkK1l — B=Br¢p+Vyx Ve
Br = By ~ B (1 - RLocose) & = RA, ~ RoA,(r,0,¢,t)
with 1heq = teq(r) (concentric circular cross sections at equilibrium)
> Safety factor: g(r) = foeé": where By eq = —Ry ' 0rtheq = —Ry 'lg
i.e. magnetic winding number

> Note: By < Br & g = 0(1)




Equilibrium trajectories: bounce motion

> Let's take (0;) ' > pc —> Je~ p=Imv},,/Br ~ cst

1 1 1
E= Emv‘f + Emvi o~ Emvﬁ +  uBr(r,0)
———

Enin “along" field line potential well, r>~cst

> Circular cross section — A classical pendulum :-))
Vi = (% + R3q* () ~ R3q*(r)0* & Br = Bo (1 - cosg)

& 1. uBor uBo
=-6 - 0
mR2q? 2 mR3q? cost+ R2q?
~—— ——
=g/l =cst
» Trapping parameter: k> = S e= %@ (k? € [0, 1] for trapped

particles)
Jy = L my| ds; = 8 Ry 2 q\/muBo [(k2 —1)K(k)+ E(k)}
1= 50 1dsi = —Ro

> Bounce period: Tp = 27w, ' = 27 9J; /OE = 4Roq Z—S‘;K(k)



Banana width & precessional motion
> P, = mRv, + £1 is an exact invariant (¢ is cyclic at the equilibrium)
vy 2 v| changes along the trajectory — 1) (i.e. r) must change too
> PLp = mRoVH|9:0 + *weq(r) + *1/Jeq6r|9—0 - Pnp|turning point = Ewe‘l( )
— Banana orbit width: dr|o—o = q A VH|9 0

» Two possible reasons for tor0|dal precession:
1) Magnetic shear: forward/backward motions are not along the same line

/
Ap = %dg@ = }{qd@—!—?!q'drd& ~q'(r)drlo—o — wpy = ;Lr)r-]\\wb

=0
2) The magnitude of v is not the same during forward/backward motion

ovilo=o _ pbBog
5 =0 — B 5 — ~ =
Ex,l1lo=0 = uBodr|p=0 — wp 2 Ry o Ror

> It is possible to obtain wp rigorously ( wp = wp,1 + wp,2 ) using

wp _ OEOY 04 _ e ¢ 1 9
w0, 08 9l J"’%P*"d“"") = Velr) = WP e Uty Or




Deeply trapped particles

> Let's take v — 0, thus:

Jj = 0 and stays zero (w < wp), as well as v

pand Jy = 0 are parameters

(¢, P,) are the natural canonical variables: 2D phase space :-)
Py~ %1, ie. Py, r& dp, < 0,

» The Hamiltonian H = - (P” - EA”)2 + uBt + e¢ reduces to

2m

vV vy vy

H(907 PSD) = I’LBT(PSP) + e¢(907 P<P7 t)
—_——— — —
equilibrium mode

= The coupling is done only via the electric potential ¢

_OH _ OuBr | 0e¢p  Or O0Br(r) . ar 9¢(r,p,t)

Y=op, " op, Top, "op, or %P, or
—_— —

_ _#KBpg
wb= mwcRor

> 7_87’-,7 8¢(ra%t)
P, = 84,0_67850




A reduced Fishbone model: Fast particle response

> Take into account only deeply trapped particles (v = 0) with a single
value for the magnetic moment, = pi.

= Reduction of the phase space from 6D to 2D (¢, P,)

> All fast particles are contained well inside the g = 1 surface
(“core region”)

> The dominant mode has a kink-like shape (mode numbers m = n =1,
electric potential ¢/r ~ cst well inside of the g = 1 surface)

%JF[H» fl=0 ; H(p,P,) = pu«Br(Py) + eg(ep, Py)
OuBr _ wBrq(P,) _ Po(t)
9P, —UJD(Pa)*wCTr(;;) . p=r(Py) . e’

> Note: particles interact with a single mode. All the other ones vanish far
quicker in the core region where particles are.



A reduced Fishbone model: Bulk plasma response

» Fluid description for the bulk of the plasma, neglecting the thermal
pressure effects and density variations — Reduced-MHD description.

% i (o =0

aaAt¢ + {¢7 A¢} {w Aw} = p = (lnormalization [(90 X K) VP, h]

> Toroidal effects are retained only for the contribution given by fast
particles (x is the toroidal curvature and P, , the fast particle pressure)
— Cylindrical geometry

> As before we set ¢ = r¢°(t) =19 \ell inside the g = 1 surface

» On the contrary strong variations are allowed across the g = 1 surface
and finally ¢ — 0 for r — a

> One mode evolution: only Fast particle (kinetic) nonlinearities are
retained, MHD nonlinearities are neglected



Linear theory: Analytic results |

> Let's take f = Feq + 0f, with 6f < Feq, and 9y — —iw. The mode
equation reads

(9B () ¢) - [

g dFeq dr

ro dr dP,
where §f = —2 T “¢
wp(r) —w

» Note as a spatial gradient corresponds to the usual velocity gradient.
Here a “decreasing density” is equivalent to a bump on the tail.

» Finally a general dispersion relation is obtained :

_ 1y*q(y)? (—%")
i=K / A L dy (1)
o aly)— wp(y=1)

where K takes into account the energetic content for the fast particles,
the MHD and geometric parameters and y = r/r. (r« being so that

q(r) = 1).



Linear theory: analytic results |l

> Let's take: Feqg = 20(p — px)ov) (1 — erf(B(y — y0))
— analytic values the threshold condition and mode frequency at the

threshold ) .
Ko= —— = 1— —
TV Y wolyo) ( B%)

where yp is the position of the highest radial gradient in the distribution
function

> Close to the threshold
K=Ki+dK ; w=wo+ow—+ivy
we obtain a growth rate and a correction for the real frequency:

5K /7 17
;o dw o = —
YT 28y

~ — wo ;
v Ko Zﬂyo 0



Nonlinear numerical code

Based on the same domain decomposition:
_Annular regien

1) The core region ‘"{715%@-
> Nonlinear kinetic description: { [ Coreregon :
Semi-lagrangian code assuming r
_ (% y
(1)7 I’( r)‘bound
» Linearized MHD response, including the
fast particle pressure:
i.e. an evolution equation for 0, () | pound

plus the frozen-in equation for |, . (Z+ea) @b
2) Thin annular region around g = 1 surface

» No fast particle here

Poloidal
cross section

By o e
. Tz/ Pi(PLy)dr
o Tbound It Jo

» Cylindrical — slab description

» Semi-spectral MHD code
(only one mode at present time)

Uses O, (%)|bound & Y|p,umg 3 B.C.

Provides ¢ & ¢,
in particular @|pound (the Hamiltonian)



Linear benchmark

With numerical simulations, the linear results are recovered

> Good agreement with frequency value

» Good agreement with growth rate and mode shape

Figure : Growth rate as a function of
K /K. Stars are the numerical values,
the green line is the analytic prediction.

Figure : ¢ profile in the annular layer.
In blue the real part, in red the
imaginary part.



Nonlinear results: Mode saturation level

> The first local maximum of the amplitude is proportional to 42 i.e when

the phase-space island width oc 4/¢ reaches the resonance width o< ~y
[Zonca et al., NJP, 2015]

» Amplitude oscillations are far larger compared to the usual “Bump on
Tail” case, with [Berk et al., PLA, 1997] or without dissipation [O'Neil,
PF, 1965]

Figure : Evolution of the kinetic energy of the mode versus time, in logscale



Frequency chirping and particle ejection
Chirping is observed during the saturated phase (case studied here:
K/Ko = 1.2, giving v/w = 2.8%)
» Phase space structure motion matches frequency change
» Asymmetric system — Higher amplitude for the down chirping mode, i.e.
particle ejection
> Outgoing particles continue to interact with the mode but actually are
not trapped into the mode well

Frequency

Po t

Figure : On the left : Evolution of the distribution function averaged over
angle. On the right : spectrogram of the mode.



Structures in phase-space

» Dynamics close to the first maximum and minimum of the mode
amplitude

» Only partial folding of f inside the phase-space island

=

> Strong stretching in ¢ & P, directions

==
= =

Figure : Distribution function at different stages of the saturation.




Island contraction and slippage




Contraction and slippage: The Fishbone peculiarity

The dispersion relation of the Fishbone is really different from the usual Bump
on Tail one:

» BoT: marginally stable plasma wave + particle driver leading to instability
i.e. ®D(w, k) ~0 & asmall ID gives the instability
Thus when the energetic driver drops, the mode response is not dramatic.

> Fishbone exists only because fast particles are there, indeed wr = wp,n
It is a genuine “energetic particle mode” [Zonca et al., NJP, 2015]

» The mode response to the energetic driver variation can be strong:

& ' R N A
ﬁ@) + wa(r) (%) :_'Eﬁ/o dFP’p(f) = RHS

In the core wf\’bou,,d > Oi ~ w thus the mode is slave, compared to the
particle driver:

(?)

Amplitude and phase simply follow: the mode is slave to the energetic
driver.

RHS

- 2
bound Wa ‘ bound

giving  @|,.na = 0 < RHS




Conclusions

» The Precessional Fishbone instability can be described by an hybrid
Fluid-Hamiltonian model where the phase-space coordinates are quite
unusual.

» This reduced model is able to catch the qualitative dynamics of the mode:
the frequency downchirping of the mode and the gradual ejection of fast
particles.

> It has the great advantage, over more complete models, of permitting an
easier analysis of the structure dynamics in phase-space.

» Future perspectives:
1) Allowing MHD nonlinearities to develops around the g = 1 surface.
2) Looking at a more general approach for “energetic particle modes”.
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