Nonlinear hydrid simulations of precessional Fishbone instability

M. Faganello ${ }^{1}$, M. Idouakass ${ }^{1}$, H. L. Berk ${ }^{2}$, X. Garbet ${ }^{3}$, S. Benkadda ${ }^{1}$
${ }^{1}$ Aix-Marseille University, CNRS, PIIM UMR 7345, Marseille, France
2 Institute for Fusion Studies, University of Texas, USA
${ }^{3}$ CEA, IRFM, 13115, St Paul lès Durance, France

(Aix*Marseille

Outline

Introduction
The Precessional Fishbone instability
Tokamak geometry and particle motion

A reduced Fishbone model

Linear theory
Analytic results

Numerical results
Numerical code
Linear benchmark
Nonlinear results

Conclusions

Context: the Fishbone instability

- First observation on the PDX tokamak, with near perpendicular neutral beam injection active
- Bursts of electromagnetic instability, associated with losses of fast particles
- Mode frequency consistent with trapped fast ion precession frequency
- Dominant $m=n=1$, kink-shaped, mode structure
- Observation of frequency chirping

Figure: [McGuire et al., PRL, 1983]

Trapped particle trajectories (passing are confined too!)

- $\omega_{c} \gg \omega_{\text {bounce }}>\omega_{\text {precession }} \longrightarrow$ possible decoupling of the three dynamics: Full kinetic, Gyrokinetic or Bounce-averaged descriptions
- For elegant derivation, using Lie algebra, see [Littlejohn, PS, 1982] $(\mathbf{x}, \mathbf{v}) \rightarrow\left(\mathbf{X}_{\mathbf{g c}}, v_{\|},\left(J_{c}, \zeta_{c}\right)\right) \xrightarrow{\omega \ll \omega_{c}}\left(\mathbf{X}_{\mathbf{g c}}, v_{\|} ; J_{c}\right)$ $\left.\left(\mathbf{X}_{\mathbf{g c}}, \boldsymbol{v}_{\|} ; J_{c}\right) \rightarrow\left(\alpha, \beta,\left(J_{\|}, \zeta_{\|}\right) ; J_{c}\right) \xrightarrow{\omega \ll \omega_{b}}\left(\alpha, \beta ; J_{\|}, J_{c}\right) \rightarrow\left(\left(J_{p}, \zeta_{p}\right) ; J_{\|}, J_{c}\right)\right)$

The small "inverse aspect ratio" Tokamak

- $\epsilon=a / R_{0} \ll 1 \longrightarrow \mathbf{B}=B_{T} \hat{\varphi}+\nabla \psi \times \nabla \varphi$
$B_{T}=B_{0} \frac{R_{0}}{R} \simeq B_{0}\left(1-\frac{r}{R_{0}} \cos \theta\right) \quad \& \quad \psi=R A_{\varphi} \simeq R_{0} A_{\varphi}(r, \theta, \varphi, t)$ with $\psi_{\text {eq }}=\psi_{\text {eq }}(r)$ (concentric circular cross sections at equilibrium)
- Safety factor: $q(r)=\frac{r B_{\theta, e q}}{R_{0} B_{T}}$ where $B_{\theta, e q}=-R_{0}^{-1} \partial_{r} \psi_{e q}=-R_{0}^{-1} \psi_{e q}^{\prime}$ i.e. magnetic winding number
- Note: $B_{\theta} \ll B_{T} \& q=O(1)$

Equilibrium trajectories: bounce motion

- Let's take $\left(\partial_{r}\right)^{-1} \gg \rho_{c} \longrightarrow J_{c} \simeq \mu=\frac{1}{2} m v_{\text {gyro }}^{2} / B_{T} \simeq c s t$

$$
\mathcal{E}=\frac{1}{2} m v_{\|}^{2}+\frac{1}{2} m v_{\perp}^{2} \simeq \underbrace{\frac{1}{2} m v_{\|}^{2}}_{\mathcal{E}_{\text {kin }} \text { "along" field line }}+\underbrace{\mu B_{T}(r, \theta)}_{\text {potential well, } r \simeq c s t}
$$

- Circular cross section \longrightarrow A classical pendulum :-))

$$
\begin{aligned}
v_{\|}^{2}=\left(r^{2}+R_{0}^{2} q^{2}(r)\right) \dot{\theta}^{2} & \simeq R_{0}^{2} q^{2}(r) \dot{\theta}^{2} \quad \& \quad B_{T}=B_{0}\left(1-\frac{r}{R_{0}} \cos \theta\right) \\
\frac{\mathcal{E}}{m R_{0}^{2} q^{2}} & =\frac{1}{2} \dot{\theta}^{2}-\underbrace{\frac{\mu B_{0} r}{m R_{0}^{3} q^{2}}}_{=g / /} \cos \theta+\underbrace{\frac{\mu B_{0}}{m R_{0}^{2} q^{2}}}_{=c s t}
\end{aligned}
$$

- Trapping parameter: $k^{2}=\frac{e+1}{2}, \quad e=\frac{\mathcal{E}-\mu B_{0}}{\mu B_{0}} \frac{R_{0}}{r}\left(k^{2} \in[0,1]\right.$ for trapped particles)

$$
J_{\|}=\frac{1}{2 \pi} \oint m v_{\|} d s_{\|}=\frac{8}{\pi} R_{0}^{-1 / 2} q \sqrt{m \mu B_{0}}\left[\left(k^{2}-1\right) K(k)+E(k)\right]
$$

- Bounce period: $T_{b}=2 \pi \omega_{b}^{-1}=2 \pi \partial J_{\|} / \partial \mathcal{E}=4 R_{0} q \sqrt{\frac{m R_{0}}{\mu B_{0}}} K(k)$

Banana width \& precessional motion

- $P_{\varphi}=m R v_{\varphi}+\frac{e}{c} \psi$ is an exact invariant (φ is cyclic at the equilibrium)
$v_{\varphi} \simeq v_{\|}$changes along the trajectory $\longrightarrow \psi$ (i.e. r) must change too
- $P_{\varphi}=\left.m R_{0} v_{\|}\right|_{\theta=0}+\frac{e}{c} \psi_{e q}(r)+\left.\frac{e}{c} \psi_{e q}^{\prime} \delta r\right|_{\theta=0}=\left.P_{\varphi}\right|_{\text {turning point }}=\frac{e}{c} \psi_{e q}(r)$
\longrightarrow Banana orbit width: $\left.\delta r\right|_{\theta=0}=\left.\frac{q R_{0}}{\omega_{c}{ }^{r}} v_{\|}\right|_{\theta=0}$
- Two possible reasons for toroidal precession:

1) Magnetic shear: forward/backward motions are not along the same line

$$
\Delta \varphi=\oint d \varphi=\underbrace{\oint q d \theta}_{=0}+\left.\oint q^{\prime} \delta r d \theta \simeq q^{\prime}(r) \delta r\right|_{\theta=0} \rightarrow \omega_{D, 1} \simeq \frac{q^{\prime}(r)}{m \omega_{c} r} J_{\|} \omega_{b}
$$

2) The magnitude of $v_{\|}$is not the same during forward/backward motion

$$
\left.\delta \mathcal{E}_{k, \|}\right|_{\theta=0}=\left.\mu B_{0} \delta r\right|_{\theta=0} \longrightarrow \omega_{D, 2} \simeq \frac{\left.\delta v_{\| \|}\right|_{\theta=0}}{R_{0}}=\frac{\mu B_{0} q}{m \omega_{c} R_{0} r}
$$

- It is possible to obtain ω_{D} rigorously $\left(\omega_{D}=\omega_{D, 1}+\omega_{D, 2}\right)$ using

$$
\frac{\omega_{D}}{\omega_{b}}=\frac{\partial \mathcal{E}}{\partial J_{p}} \frac{\partial J_{\|}}{\partial \mathcal{E}}=\frac{\partial J_{\|}}{\partial J_{p}} ; J_{p}=\oint P_{\varphi} d \varphi=P_{\varphi}=\frac{e}{c} \psi_{e q}(r) \rightarrow \omega_{D}=\frac{c}{e} \frac{1}{\psi_{e q}^{\prime}} \frac{\partial J_{\|}}{\partial r}
$$

Deeply trapped particles

- Let's take $v_{\|} \rightarrow 0$, thus:
- $J_{\|}=0$ and stays zero $\left(\omega \ll \omega_{b}\right)$, as well as $v_{\|}$
- μ and $J_{\|}=0$ are parameters
- $\left(\varphi, P_{\varphi}\right)$ are the natural canonical variables: 2D phase space :-)
- $P_{\varphi} \simeq \frac{e}{c} \psi$, i.e. $P_{\varphi} \leftrightarrow r \& \partial_{P_{\varphi}} \leftrightarrow \partial_{r}$
- The Hamiltonian $H=\frac{1}{2 m}\left(\mathbf{P}_{\|}-\frac{e}{c} \mathbf{A}_{\|}\right)^{2}+\mu B_{T}+e \phi$ reduces to

$$
H\left(\varphi, P_{\varphi}\right)=\underbrace{\mu B_{T}\left(P_{\varphi}\right)}_{\text {equilibrium }}+\underbrace{e \phi\left(\varphi, P_{\varphi}, t\right)}_{\text {mode }}
$$

\Rightarrow The coupling is done only via the electric potential ϕ

$$
\begin{gathered}
\dot{\varphi}=\frac{\partial H}{\partial P_{\varphi}}=\frac{\partial \mu B_{T}}{\partial P_{\varphi}}+\frac{\partial e \phi}{\partial P_{\varphi}}=\underbrace{\mu \frac{\partial r}{\partial P_{\varphi}} \frac{\partial B_{T}(r)}{\partial r}}_{\omega_{D}=\frac{\mu B_{0} q}{m \omega_{c} R_{0} r}}+e \frac{\partial r}{\partial P_{\varphi}} \frac{\partial \phi(r, \varphi, t)}{\partial r} \\
\dot{P_{\varphi}}=-\frac{\partial H}{\partial \varphi}=e \frac{\partial \phi(r, \varphi, t)}{\partial \varphi}
\end{gathered}
$$

A reduced Fishbone model: Fast particle response

- Take into account only deeply trapped particles $\left(v_{\|}=0\right)$ with a single value for the magnetic moment, $\mu=\mu_{*}$
\Rightarrow Reduction of the phase space from 6D to 2D $\left(\varphi, P_{\varphi}\right)$
- All fast particles are contained well inside the $q=1$ surface ("core region")
- The dominant mode has a kink-like shape (mode numbers $m=n=1$, electric potential $\phi / r \simeq c s t$ well inside of the $q=1$ surface)

$$
\begin{gathered}
\frac{\partial f}{\partial t}+[H, f]=0 \quad ; \quad H\left(\varphi, P_{\varphi}\right)=\mu_{*} B_{T}\left(P_{\varphi}\right)+e \phi\left(\varphi, P_{\varphi}\right) \\
\frac{\partial \mu_{*} B_{T}}{\partial P_{\alpha}}=\omega_{D}\left(P_{\alpha}\right)=\frac{\mu B_{T} q\left(P_{\varphi}\right)}{\omega_{C} m R r\left(P_{\varphi}\right)} \quad ; \quad \phi=r\left(P_{\varphi}\right) \frac{\phi_{0}(t)}{r_{0}} e^{i \varphi}
\end{gathered}
$$

- Note: particles interact with a single mode. All the other ones vanish far quicker in the core region where particles are.

A reduced Fishbone model: Bulk plasma response

- Fluid description for the bulk of the plasma, neglecting the thermal pressure effects and density variations \longrightarrow Reduced-MHD description.

$$
\begin{gathered}
\frac{\partial \psi}{\partial t}+\{\phi, \psi\}=0 \\
\frac{\partial \Delta \phi}{\partial t}+\{\phi, \Delta \phi\}-\{\psi, \Delta \psi\}=\widetilde{\rho}=\alpha_{\text {normalization }}\left[(\hat{\varphi} \times \kappa) \cdot \nabla P_{\perp, h}\right]
\end{gathered}
$$

- Toroidal effects are retained only for the contribution given by fast particles (κ is the toroidal curvature and $P_{\perp, h}$ the fast particle pressure) \longrightarrow Cylindrical geometry
- As before we set $\phi=r \frac{\phi_{0}(t)}{r_{0}} e^{i \varphi-i \theta}$ well inside the $q=1$ surface
- On the contrary strong variations are allowed across the $q=1$ surface and finally $\phi \rightarrow 0$ for $r \rightarrow a$
- One mode evolution: only Fast particle (kinetic) nonlinearities are retained, MHD nonlinearities are neglected

Linear theory: Analytic results I

- Let's take $f=F_{\text {eq }}+\delta f$, with $\delta f \ll F_{e q}$, and $\partial_{t} \rightarrow-i \omega$. The mode equation reads

$$
\begin{gathered}
-\omega^{2}\left(\frac{\phi}{r}\right)^{\prime}+\frac{v_{A, T}^{2}}{R_{0}^{2}}\left(1-\frac{1}{q(r)}\right)^{2}\left(\frac{\phi}{r}\right)^{\prime}=-i \omega \frac{1}{r^{3}} \int_{0}^{r} d \bar{r} \bar{r}^{2} \tilde{\rho}(\delta f) \\
\text { where } \quad \delta f=\frac{e r \frac{\phi_{0}}{r_{0}} \frac{d F_{e q}}{d r} \frac{d r}{d P_{\varphi}}}{\omega_{D}(r)-\omega}
\end{gathered}
$$

- Note as a spatial gradient corresponds to the usual velocity gradient. Here a "decreasing density" is equivalent to a bump on the tail.
- Finally a general dispersion relation is obtained :

$$
\begin{equation*}
i=K \int_{0}^{1} \frac{y^{2} q(y)^{2}\left(-\frac{d F_{e q}}{d y}\right)}{q(y)-\frac{y \omega}{\omega_{D}(y=1)}} d y \tag{1}
\end{equation*}
$$

where K takes into account the energetic content for the fast particles, the MHD and geometric parameters and $y=r / r_{*}$ (r_{*} being so that $q\left(r_{*}\right)=1$)

Linear theory: analytic results II

- Let's take: $F_{\text {eq }}=\frac{n_{0}}{2} \delta\left(\mu-\mu_{*}\right) \delta v_{\|}\left(1-\operatorname{erf}\left(\beta\left(y-y_{0}\right)\right)\right.$ \longrightarrow analytic values the threshold condition and mode frequency at the threshold

$$
K_{0}=\frac{-1}{\sqrt{\pi} \beta y_{0}^{3}} ; \quad \omega_{0}=\omega_{D}\left(y_{0}\right)\left(1-\frac{1}{\beta^{2} y_{0}^{2}}\right)
$$

where y_{0} is the position of the highest radial gradient in the distribution function

- Close to the threshold

$$
K=K_{0}+\delta K \quad ; \quad \omega=\omega_{0}+\delta \omega+i \gamma
$$

we obtain a growth rate and a correction for the real frequency:

$$
\gamma \simeq \frac{\delta K}{K_{0}} \frac{\sqrt{\pi}}{2 \beta y_{0}} \omega_{0} ; \quad \delta \omega \simeq \frac{1}{2} \frac{\sqrt{\pi}}{\beta y_{0}} \gamma
$$

Nonlinear numerical code

Based on the same domain decomposition:

1) The core region

- Nonlinear kinetic description: Semi-lagrangian code assuming $\phi=\left.r\left(\frac{\phi}{r}\right)\right|_{\text {bound }}$
- Linearized MHD response, including the fast particle pressure:
i.e. an evolution equation for $\left.\partial_{r}\left(\frac{\phi}{r}\right)\right|_{\text {bound }}$ plus the frozen-in equation for $\left.\psi\right|_{\text {bound }}$

2) Thin annular region around $q=1$ surface

- No fast particle here
- Cylindrical \rightarrow slab description
- Semi-spectral MHD code (only one mode at present time)
- Uses $\left.\left.\partial_{r}\left(\frac{\phi}{r}\right)\right|_{\text {bound }} \& \psi\right|_{\text {bound }}$ as B.C.
- Provides $\psi \& \phi$, in particular $\left.\phi\right|_{\text {bound }}$ (the Hamiltonian)

Linear benchmark

With numerical simulations, the linear results are recovered

- Good agreement with frequency value
- Good agreement with growth rate and mode shape

Figure: Growth rate as a function of K / K_{0}. Stars are the numerical values, the green line is the analytic prediction.

Figure : ϕ profile in the annular layer. In blue the real part, in red the imaginary part.

Nonlinear results: Mode saturation level

- The first local maximum of the amplitude is proportional to γ^{2} i.e when the phase-space island width $\propto \sqrt{\phi}$ reaches the resonance width $\propto \gamma$ [Zonca et al., NJP, 2015]
- Amplitude oscillations are far larger compared to the usual "Bump on Tail" case, with [Berk et al., PLA, 1997] or without dissipation [O'Neil, PF, 1965]

Figure : Evolution of the kinetic energy of the mode versus time, in logscale

Frequency chirping and particle ejection

Chirping is observed during the saturated phase (case studied here:

$$
\left.K / K_{0}=1.2, \text { giving } \gamma / \omega=2.8 \%\right)
$$

- Phase space structure motion matches frequency change
- Asymmetric system \rightarrow Higher amplitude for the down chirping mode, i.e. particle ejection
- Outgoing particles continue to interact with the mode but actually are not trapped into the mode well

Figure: On the left: Evolution of the distribution function averaged over angle. On the right : spectrogram of the mode.

Structures in phase-space

- Dynamics close to the first maximum and minimum of the mode amplitude
- Only partial folding of f inside the phase-space island
- Strong stretching in $\varphi \& P_{\varphi}$ directions

Figure : Distribution function at different stages of the saturation.

Island contraction and slippage

Contraction and slippage: The Fishbone peculiarity

The dispersion relation of the Fishbone is really different from the usual Bump on Tail one:

- BoT: marginally stable plasma wave + particle driver leading to instability i.e. $\Re D(\omega, k) \simeq 0 \quad \&$ a small $\Im D$ gives the instability

Thus when the energetic driver drops, the mode response is not dramatic.

- Fishbone exists only because fast particles are there, indeed $\omega_{R}=\omega_{D, h}$ It is a genuine "energetic particle mode" [Zonca et al., NJP, 2015]
- The mode response to the energetic driver variation can be strong:

$$
\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\phi}{r}\right)^{\prime}+\omega_{A}^{2}(r)\left(\frac{\phi}{r}\right)^{\prime}=-i \frac{\partial}{\partial t} \frac{1}{r^{3}} \int_{0}^{r} d \bar{r}^{2} \tilde{\rho}(f)=R H S
$$

In the core $\omega_{A, \text { bound }}^{2} \gg \partial_{t t} \simeq \omega_{R}^{2}$ thus the mode is slave, compared to the particle driver:

$$
\left.\left(\frac{\phi}{r}\right)^{\prime}\right|_{\text {bound }} \simeq \frac{R H S}{\left.\omega_{A}^{2}\right|_{\text {bound }}} \text { giving }\left.\quad \phi\right|_{\text {bound }}=\phi_{0} \propto R H S
$$

Amplitude and phase simply follow: the mode is slave to the energetic driver.

Conclusions

- The Precessional Fishbone instability can be described by an hybrid Fluid-Hamiltonian model where the phase-space coordinates are quite unusual.
- This reduced model is able to catch the qualitative dynamics of the mode: the frequency downchirping of the mode and the gradual ejection of fast particles.
- It has the great advantage, over more complete models, of permitting an easier analysis of the structure dynamics in phase-space.
- Future perspectives:

1) Allowing MHD nonlinearities to develops around the $q=1$ surface.
2) Looking at a more general approach for "energetic particle modes".
