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Context: the Fishbone instability

I First observation on the
PDX tokamak, with near
perpendicular neutral beam
injection active

I Bursts of electromagnetic
instability , associated with
losses of fast particles

I Mode frequency consistent
with trapped fast ion
precession frequency

I Dominant m = n = 1,
kink-shaped, mode structure

I Observation of frequency
chirping

Figure : [McGuire et al., PRL, 1983]



Trapped particle trajectories (passing are confined too!)

I ωc � ωbounce > ωprecession −→ possible decoupling of the three dynamics:
Full kinetic, Gyrokinetic or Bounce-averaged descriptions

I For elegant derivation, using Lie algebra, see [Littlejohn, PS, 1982]

(x, v)→ (Xgc, v‖, (Jc , ζc ))
ω�ωc−−−−→ (Xgc, v‖; Jc )

(Xgc, v‖; Jc )→ (α, β, (J‖, ζ‖); Jc )
ω�ωb−−−−→ (α, β; J‖, Jc )→ ((Jp, ζp); J‖, Jc ))



The small ”inverse aspect ratio” Tokamak

I ε = a/R0 � 1 −→ B = BT ϕ̂+∇ψ ×∇ϕ
BT = B0

R0
R
' B0

(
1− r

R0
cos θ

)
& ψ = RAϕ ' R0Aϕ(r , θ, ϕ, t)

with ψeq = ψeq(r) (concentric circular cross sections at equilibrium)

I Safety factor: q(r) =
rBθ,eq

R0BT
where Bθ,eq = −R−1

0 ∂rψeq = −R−1
0 ψ′eq

i.e. magnetic winding number

I Note: Bθ � BT & q = O(1)



Equilibrium trajectories: bounce motion

I Let’s take (∂r )−1 � ρc −→ Jc ' µ = 1
2
mv 2

gyro/BT ' cst

E =
1

2
mv 2
‖ +

1

2
mv 2
⊥ '

1

2
mv 2
‖︸ ︷︷ ︸

Ekin “along“ field line

+ µBT (r , θ)︸ ︷︷ ︸
potential well, r'cst

I Circular cross section −→ A classical pendulum :-))

v 2
‖ = (r 2 + R2

0q
2(r))θ̇2 ' R2

0q
2(r)θ̇2 & BT = B0

(
1− r

R0
cos θ

)
E

mR2
0q

2
=

1

2
θ̇2 − µB0r

mR3
0q

2︸ ︷︷ ︸
= g/l

cos θ +
µB0

mR2
0q

2︸ ︷︷ ︸
=cst

I Trapping parameter: k2 = e+1
2
, e = E−µB0

µB0

R0
r

(k2 ∈ [0, 1] for trapped

particles)

J‖ =
1

2π

∮
mv‖ds‖ =

8

π
R
−1/2
0 q

√
mµB0

[
(k2 − 1)K(k) + E(k)

]
I Bounce period: Tb = 2πω−1

b = 2π ∂J‖/∂E = 4R0q
√

mR0
µB0

K(k)



Banana width & precessional motion
I Pϕ = mRvϕ + e

c
ψ is an exact invariant (ϕ is cyclic at the equilibrium)

vϕ ' v‖ changes along the trajectory −→ ψ (i.e. r) must change too

I Pϕ = mR0v‖|θ=0 + e
c
ψeq(r) + e

c
ψ′eqδr |θ=0 = Pϕ|turning point = e

c
ψeq(r)

−→ Banana orbit width: δr |θ=0 = qR0
ωc r

v‖|θ=0

I Two possible reasons for toroidal precession:
1) Magnetic shear: forward/backward motions are not along the same line

∆ϕ =

∮
dϕ =

∮
qdθ︸ ︷︷ ︸

=0

+

∮
q′δrdθ ' q′(r)δr |θ=0 → ωD,1 '

q′(r)

mωc r
J‖ωb

2) The magnitude of v‖ is not the same during forward/backward motion

δEk,‖|θ=0 = µB0δr |θ=0 −→ ωD,2 '
δv‖|θ=0

R0
=

µB0q

mωcR0r

I It is possible to obtain ωD rigorously ( ωD = ωD,1 + ωD,2 ) using

ωD

ωb
=

∂E
∂Jp

∂J‖
∂E =

∂J‖
∂Jp

; Jp =

∮
Pϕdϕ = Pϕ =

e

c
ψeq(r) → ωD =

c

e

1

ψ′eq

∂J‖
∂r



Deeply trapped particles

I Let’s take v‖ → 0, thus:

I J‖ = 0 and stays zero (ω � ωb), as well as v‖
I µ and J‖ = 0 are parameters
I (ϕ,Pϕ) are the natural canonical variables: 2D phase space :-)
I Pϕ ' e

cψ, i.e. Pϕ ↔ r & ∂Pϕ ↔ ∂r

I The Hamiltonian H = 1
2m

(
P‖ − e

c
A‖
)2

+ µBT + eφ reduces to

H(ϕ,Pϕ) = µBT (Pϕ)︸ ︷︷ ︸
equilibrium

+ eφ(ϕ,Pϕ, t)︸ ︷︷ ︸
mode

⇒ The coupling is done only via the electric potential φ

ϕ̇ =
∂H

∂Pϕ
=
∂µBT

∂Pϕ
+
∂eφ

∂Pϕ
= µ

∂r

∂Pϕ

∂BT (r)

∂r︸ ︷︷ ︸
ωD =

µB0q
mωc R0r

+e
∂r

∂Pϕ

∂φ(r , ϕ, t)

∂r

Ṗϕ = −∂H
∂ϕ

= e
∂φ(r , ϕ, t)

∂ϕ



A reduced Fishbone model: Fast particle response

I Take into account only deeply trapped particles (v‖ = 0) with a single

value for the magnetic moment, µ = µ∗

⇒ Reduction of the phase space from 6D to 2D (ϕ, Pϕ)

I All fast particles are contained well inside the q = 1 surface
(“core region”)

I The dominant mode has a kink-like shape (mode numbers m = n = 1,
electric potential φ/r ' cst well inside of the q = 1 surface)

∂f

∂t
+ [H, f ] = 0 ; H(ϕ,Pϕ) = µ∗BT (Pϕ) + eφ(ϕ,Pϕ)

∂µ∗BT

∂Pα
= ωD (Pα) =

µBTq(Pϕ)

ωCmRr(Pϕ)
; φ = r(Pϕ)

φ0(t)

r0
e iϕ

I Note: particles interact with a single mode. All the other ones vanish far
quicker in the core region where particles are.



A reduced Fishbone model: Bulk plasma response

I Fluid description for the bulk of the plasma, neglecting the thermal
pressure effects and density variations −→ Reduced-MHD description.

∂ψ

∂t
+ {φ, ψ} = 0

∂∆φ

∂t
+ {φ,∆φ} − {ψ,∆ψ} = ρ̃ = αnormalization [(ϕ̂× κ) · ∇P⊥,h]

I Toroidal effects are retained only for the contribution given by fast
particles (κ is the toroidal curvature and P⊥,h the fast particle pressure)
−→ Cylindrical geometry

I As before we set φ = r φ0(t)
r0

e iϕ−iθ well inside the q = 1 surface

I On the contrary strong variations are allowed across the q = 1 surface
and finally φ→ 0 for r → a

I One mode evolution: only Fast particle (kinetic) nonlinearities are
retained, MHD nonlinearities are neglected



Linear theory: Analytic results I

I Let’s take f = Feq + δf , with δf � Feq, and ∂t → −iω. The mode
equation reads

−ω2

(
φ

r

)′
+

v 2
A,T

R2
0

(
1− 1

q(r)

)2(
φ

r

)′
= −iω 1

r 3

∫ r

0

dr̄ r̄ 2ρ̃(δf )

where δf =
er φ0

r0

dFeq

dr
dr

dPϕ

ωD (r)− ω
I Note as a spatial gradient corresponds to the usual velocity gradient.

Here a “decreasing density” is equivalent to a bump on the tail.

I Finally a general dispersion relation is obtained :

i = K

∫ 1

0

y 2q(y)2
(
− dFeq

dy

)
q(y)− yω

ωD (y=1)

dy (1)

where K takes into account the energetic content for the fast particles,
the MHD and geometric parameters and y = r/r∗ (r∗ being so that
q(r∗) = 1).



Linear theory: analytic results II

I Let’s take: Feq = n0
2
δ(µ− µ∗)δv‖(1− erf(β(y − y0))

−→ analytic values the threshold condition and mode frequency at the
threshold

K0 =
−1√
πβy 3

0

; ω0 = ωD (y0)

(
1− 1

β2y 2
0

)
where y0 is the position of the highest radial gradient in the distribution
function

I Close to the threshold

K = K0 + δK ; ω = ω0 + δω + iγ

we obtain a growth rate and a correction for the real frequency:

γ ' δK

K0

√
π

2βy0
ω0 ; δω ' 1

2

√
π

βy0
γ



Nonlinear numerical code
Based on the same domain decomposition:

1) The core region

I Nonlinear kinetic description:
Semi-lagrangian code assuming
φ = r

(
φ
r

)∣∣
bound

I Linearized MHD response, including the
fast particle pressure:
i.e. an evolution equation for ∂r

(
φ
r

)∣∣
bound

plus the frozen-in equation for ψ|bound

2) Thin annular region around q = 1 surface

I No fast particle here

I Cylindrical → slab description

I Semi-spectral MHD code
(only one mode at present time)

I Uses ∂r

(
φ
r

)∣∣
bound

& ψ|bound as B.C.

I Provides ψ & φ,
in particular φ|bound (the Hamiltonian)



Linear benchmark

With numerical simulations, the linear results are recovered

I Good agreement with frequency value

I Good agreement with growth rate and mode shape
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Figure : Growth rate as a function of
K/K0. Stars are the numerical values,
the green line is the analytic prediction.
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In blue the real part, in red the
imaginary part.



Nonlinear results: Mode saturation level
I The first local maximum of the amplitude is proportional to γ2 i.e when

the phase-space island width ∝
√
φ reaches the resonance width ∝ γ

[Zonca et al., NJP, 2015]

I Amplitude oscillations are far larger compared to the usual “Bump on
Tail” case, with [Berk et al., PLA, 1997] or without dissipation [O’Neil,
PF, 1965]
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Figure : Evolution of the kinetic energy of the mode versus time, in logscale



Frequency chirping and particle ejection
Chirping is observed during the saturated phase (case studied here:
K/K0 = 1.2, giving γ/ω = 2.8%)

I Phase space structure motion matches frequency change

I Asymmetric system → Higher amplitude for the down chirping mode, i.e.
particle ejection

I Outgoing particles continue to interact with the mode but actually are
not trapped into the mode well

Figure : On the left : Evolution of the distribution function averaged over
angle. On the right : spectrogram of the mode.



Structures in phase-space
I Dynamics close to the first maximum and minimum of the mode

amplitude

I Only partial folding of f inside the phase-space island

I Strong stretching in ϕ & Pϕ directions
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Figure : Distribution function at different stages of the saturation.



Island contraction and slippage



Contraction and slippage: The Fishbone peculiarity

The dispersion relation of the Fishbone is really different from the usual Bump
on Tail one:

I BoT: marginally stable plasma wave + particle driver leading to instability
i.e. <D(ω, k) ' 0 & a small =D gives the instability
Thus when the energetic driver drops, the mode response is not dramatic.

I Fishbone exists only because fast particles are there, indeed ωR = ωD,h

It is a genuine “energetic particle mode” [Zonca et al., NJP, 2015]

I The mode response to the energetic driver variation can be strong:

∂2

∂t2

(
φ

r

)′
+ ω2

A(r)

(
φ

r

)′
= −i ∂

∂t

1

r 3

∫ r

0

dr̄ r̄ 2ρ̃(f ) = RHS

In the core ω2
A,bound � ∂tt ' ω2

R thus the mode is slave, compared to the
particle driver:(

φ

r

)′∣∣∣∣
bound

' RHS

ω2
A|bound

giving φ|bound = φ0 ∝ RHS

Amplitude and phase simply follow: the mode is slave to the energetic
driver.



Conclusions

I The Precessional Fishbone instability can be described by an hybrid
Fluid-Hamiltonian model where the phase-space coordinates are quite
unusual.

I This reduced model is able to catch the qualitative dynamics of the mode:
the frequency downchirping of the mode and the gradual ejection of fast
particles.

I It has the great advantage, over more complete models, of permitting an
easier analysis of the structure dynamics in phase-space.

I Future perspectives:
1) Allowing MHD nonlinearities to develops around the q = 1 surface.
2) Looking at a more general approach for “energetic particle modes”.
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