
Esame di Meccanica Razionale - Facoltà di Ingegneria Prova scritta del 7-5-2001

Un corpo rigido è formato da un semidisco di massa M e raggio R e da un'asta BD, di massa M e lunghezza R; l'asta è saldata perpendicolarmente al disco in modo che il suo estremo B coincide con uno dei due estremi del lato rettilineo AB del semidisco. Sia $\{O,x_1,x_2,x_3\}$ una terna inerziale di assi fissi; il semidisco è vincolato a rimanere nel piano x_1x_2 , ruotando intorno al suo centro, posto in O. Detto C il punto medio del lato curvo del semidisco, si consideri anche una terna $\{O,y_1,y_2,y_3\}$ solidale al corpo rigido: gli assi y_1 e y_2 sono nel piano x_1x_2 , con il segmento OC che giace sull'asse y_1 , mentre y_3 coincide con x_3 . Sia θ l'angolo formato dagli assi x_1 ed y_1 . Sul punto C agisce una forza $F_C = -k \sin \theta$ i_2 , con k costante ed i_2 il versore dell'asse solidale y_2 . Tutto il sistema è soggetto alla forza peso antiparallela all'asse x_3 .

- a) calcolare la posizione del baricentro G dell'intero sistema, rispetto agli assi fissi, in funzione dell'angolo θ;
- b) calcolare il momento angolare dell'intero sistema, rispetto all'origine O;
- c) calcolare le posizioni di equilibrio del sistema mediante il principio dei lavori virtuali;
- d) studiare la stabilità delle posizioni di equilibrio, in funzione della costante k;
- e) trovare l'equazione pura del moto del sistema.

