Zeros of functions

 Problem:

suppose you want to find the value of x which
satisfies the relation:

flx)=0 z¢€la,b]
namely the root of the equation!
. (or intermediate value theorem):

If f(x) IS a continuous function inside [a,b] and It takes
values f{a) and f{(b) in a and b, then it also takes any

value between f{a) and f(b) at some point inside the
interval!

Zeros of functions

* An important corollary of this theorem is that:

If the function changes its sign in f{a) and f{(b),
then it must have a root inside [a,b]!

Vi

; \
O a \b
()

Zeros of functions

* Avery immediate method to find the root of the
equation could then be:

Fix the precision £ with which one wants to find the

solution;

Divide [a,b] in N subsequent subintervals [x,,x.,],
i=0, ..., N and x,=a, x,=b, Ax = Tiv1 — 2] <€

Scan all the subintervals and find the one for which:

f(xi) - f(wip1) <O

Now we have determined the zero with a precision

equal to Ax:

1

—1A$

o= (x; + xi01) =

"2

Zeros of functions

* In a graphical representation for N=10:

O A X XpXgXyXg K7 KgXgh

 The solution is: a = (xg+x,)/2

Vi

Zeros of functions

* This is a good method only when the number N
of subintervals is not too high, since for each
subinterval [x,x,,,] one has to evaluate the

product f(z;)- f(ziy1)N times, in the worst case!

* A more efficient algorithm: the bisection
algorithm!

> It belongs to the class of “
algorithms

> Like other algorithms of the same kind (e.g. FFT, we
will see later) lowers the number of required
operations.

Bisection algorithm

 The idea Is to build up a sequence of smaller
and smaller subintervals by halving the interval
at the previous step!

* At the first step of the sequence, one starts with
an interval a,=a, b,=>b.

 Then one evaluates the midpoint x, between q,

. 1
and b, To = 5(ao + bo)

 Now, unless the zero Is exactly in x,, It stays
either In [ay,x,] Or In [xy,b,].

Bisection algorithm

This is realized by looking at the products:
flao) - f(wo) and f(zo)- f(bo)

One of the two has to be < Q!

In case It is the first one, we let:
a,=agy, b,;=x,;

In case It Is the second one, we let:
a,=xq, b,=by;

and so on...

Bisection algorithm

ag X g

Bisection algorithm

aq X

Bisection algorithm

™~

az\b\

Bisection algorithm

N

N\

Bisection algorithm

I

N\

Bisection algorithm

™~

<

Bisection algorithm

 How many iterations are needed in order to
compute the value of the zero with a given
precision £?

* We know that, at each iteration, the interval is
halved, namely the width w, of the interval In
which the zero Is at the i-th iteration Is:

wo =bg —ap=b—a at iteration 7 = O;
1 1

wy =b; —ay = 5@00 = §(b — a) at iteration 7 = 1;
1 1 . : .

we =by —as = —w; = —(b—a) at iteration i = 2;

2 22

Bisection algorithm

e At the n-th iteration we have:

1
Wy, = 2—n(b—a)

* We stop the procedure when:
1

w, <€ = z—n(b—a)ge
1
= log, {Z—n(b—a)] < log, €

= —logy(2") +logy(b—a) <log, €
(b—a)

€

= logQ[}Sn

Bisection algorithm

e Pros:

> The algorithm always gives a solution (provided
that the initial interval does indeed contains a
zero!)!

> The number of iterations required is known a
priori independently of the particular function f(x)!

e Cons:

— The algorithm can be very slow (large »!) if the
Initial interval (b-a) Is large and the required
precision (&) is small!

Newton’s algorithm

 The idea of Newton’s algorithm is to find a
succession of subsequent approximations of
the solution.

* Lagrange’s mean value theorem:

_et be f{(x) a real function which is continuous
and differentiable on the interval [a,b]. Then,
there exists some c In [a,b] such that:

f(b) — fla)
b—a

f'(c) =

Newton’s algorithm

 Now, let o be the root of the equation and x, a
value close to a. Then, by applying the previous
theorem to the interval [x,,a]:

f/(C) — f(Oé) o f(ﬂfo)

X — Xy

that is, there must be a value c In [x,,&] which
satisfies the equation:
f(xo)

f'(c)

= X —

since flax) = 0!

Newton's

algorithm

e Of course, if we knew the point ¢, we would
have solved the problem, since the relation

above gives us the va

* \We can then try to finc

ue of «.

a new value for the

solution, x;, by approximating ¢ with x,.

r1 — o —

f (o)
f'(z0)

* |n an analogous way, we can build up a

successions of values

(hopefully!) closer and

closer to the solution, as:

Thtl = Tk = 50

f(zk)

L

Newton’s algorithm

» Geometrical interpretation:
flzr) = |PQ)
PQ)

/
T) = —
0 3 f(k) ‘RP‘
Ll — ‘OP’

f(xy)

PR TR T ()

Vi

PQ)
—|PQ|/|RP|

= |OP| — = |OP| + |RP| = |OR|

Newton’s algorithm

» At the subsequent step:

Vi

AN

f(X et 1)

K+l =R
o

$k+2::1%+1'—!f%

$k+1)

[RQ'|/|RR|

f(@e41) = |RQ'|

: _ RO
Zi+1 = |OR]

= |OR| — |RR'| = |OR/|

Newton’s algorithm

* Pros:
> The convergence of the method is very fast!

> |t does not depend on the width of the interval in
which the root is located, but only on the initial

guess x,,
e Cons:

> However, the method may also not converge, it
depends on the shape of the function f{x);

> The number of iterations is not fixed a priori, but
depends on x,

Newton’s algorithm

* Two examples:
> Find the root of the equation:

e’ —1.5=0

In the interval [0,3];

> Find the root of the equation:

x I 0
3/2 +sin(mx) 2

In the Interval [0,6].

Newton’s algorithm

e |n the first case:

f(x) =¢e" — 1.5;
F@) ="
* In the second one:
x 1
f(z) = 3/2 +sin(rz) 2’
() = 3/2 + sin(wx) — xmw cos(mx)

3/2 + sin(mz)]”

Newton’s algorithm

e First case: x,=1, £=10-4

2

¥ = 1.000000

15 ¢

1 F

05 r

0

-05

Newton’s algorithm

e First case: x,=1, £=10-4

2 1 T
X . = 1.000000
15 |
X sy = 0551819

1 F

05 r

0

-05

Newton’s algorithm

e First case: x,=1, £=10-4

2

¥ = 0551813
15 ¢

X sy = 0415671
j_ L
05 |

O O i

-05

Newton’s algorithm

e First case: x,=1, £=10-4

2

e = 0415671
15 ¢

X a1 = 0.405517
j_ L
05 |

O i

-05

Newton’s algorithm

e First case: x,=1, £=10-4

2

H = 0.405517

15 |
X a1 = 0.405465

1 F

05 r

S i

-05

-1

0 0.5 1 15 2

a = log(3/2) = 0.40546510810816438197

Newton’s algorithm

e Second case: x,=0.5, £=10+4

12

¥ = 0.500000

10

] fe (%3] oo
T T T

Newton’s algorithm

e Second case: x,=0.5, £=10+4

12
X, = 0500000
10 |
X ks = 1.250000
8

Newton’s algorithm

e Second case: x,=0.5, £=10+4

12

¥ = 1.250000

X sy = 1.060411

Newton’s algorithm

e Second case: x,=0.5, £=10+4

12

¥ = 1.060411
10

X sy = 0.944600

Newton’s algorithm

e Second case: x,=0.5, £=10+4

12
X = 0.944600
10 |
X sy = 0.905276
8

Newton’s algorithm

e Second case: x,=0.5, £=10+4

12
X = 0.905276
10 |
X a1 = 0,901830
8

Newton’s algorithm

e Second case: x,=0.5, £=10+4

12
X = 0.901830
10 |
X a1 = 0.901807
8

Newton’s algorithm

e Second case: x,=2.0, £=10+4

12

¥ = 2.000000

10

] fe (%3] oo
T T T

Newton’s algorithm

e Second case: x,=2.0, £=10+4

12
X = 2.000000
10 |
X sy = 2.391998
8

Newton’s algorithm

e Second case: x,=2.0, £=10+4

12

Xy = 2391998

10 |
X sy = 51621833

No convergence!

Newton’s algorithm

e Second case: x,=3.0, £=10+4

12

¥ = 3.000000

10

] fe (%3] oo
T T T

Newton’s algorithm

e Second case: x,=3.0, £=10+4

12

¥ = 3.000000
10

X sy = 2.691069

Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X\ = 2.691069
10 |
Xy = 2.190552
8

Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X = 2.190552
10 |
X sy = 2.850812
8

Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X\ = 2.850812
10 |
X sy = 2.482739
8

Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X\ = 2.482739
10 |
X s q = 0.998063
8

Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X = 0.998063
10 |
X sy = 0.918559
8

Newton’s algorithm

e Second case: x,=3.0, £=10+4

12

H = 0918553
10

X a1 = 0.902350

and so onl!...

Newton’s algorithm

* In general, the best thing to do is:

- At first, use a method that always converges, like
the bisection method, even if it converges slowly,
with a rough precision, in order to limit the interval
In which the zero is supposed to exist;

- Then, use Newton’s method to find a quickly
converging solution;

- In case the second step does not converge, try a
different initial guess.

As often happens in life, a fair amount of
“good luck” is fundamental!

Newton’s algorithm Iin more
dimensions

* Quite often, one needs to find the roots of a
multi-dimensional system of transcendental
equations, like:

(fl(afl,ilig,...,l‘n) =0
< fQ(ZEl,.CUQ,...,CI}n) =0
\fn(xlnyV"axn) —

where f; are n functions:

Newton’s algorithm Iin more
dimensions

» Just to keep things simple, we can make an
analogy with the one-dimensional case.

 \WWe notice that:

2D (k) flzt®]
Flw®)]
can be re-written as:
Fe®7. {xum) — a2 ®) = fe® . ge® =

that Is, the product of the derivative by the
“correction” to the x® is equal to -f [x®].

Newton’s algorithm Iin more
dimensions

* [n n dimensions:
> The derivative Is substituted by the gradient of f;

> The scalar x® becomes a vector x® as well as the
“correction” ox® becomes a vector ox® ;

- The product becomes a “dot product” between the
gradient and the ox®.

 That Is, for the i-th function f; we have:
v filzM] - 6z = — filzV)]

Newton’s algorithm Iin more
dimensions

 Which may be written explicitly as:

Of1 (k) , 9N (k) O f1 () .
—— R S 5 _

8331 7 (k) &Cl i (9:132 = (k) 5332 * + axn (k) Ly fl[aj]

0 f2 k) . Of2 (k) O f5 (k))

o —) oo+ ==) — —

. Y U L sz*) — ¢ 1K)
8371 7 (k) 53:1 + a.CEQ 7 (k) 2 + T axn — (k) Ln f [Qj]
or, in matrix form: [AR

~(k
J|£(k)5:ﬁ(k) = — fz[CE()]

\ fulz®)]

Newton’s algorithm Iin more
dimensions

* Where J Is the Jacobian matrix:

ofi 9f 0 f1
/ dry Ox2 "7 Oxn \
Ofs Of2 Of2
85131 8:132 T 8£Un
J =
\ Ofn Ofn O fn)
85131 3332 s 8:13n

» The “correction” 8x® is then given by the solution
of a linear system of equations!

Newton’s algorithm Iin more
dimensions

e Example (n = 2!):
filmy) =24y —1=0

<
foz,y) =x+y—1=0

* The first equation of the system represents a
circle with center in the origin and radius = 1.

 The second equation represents the straight
line inclined of 3z /4 with respect to the x axis.

* The solution of such a system is given by the
Intersections between the two curves:

Newton’s algorithm Iin more
dimensions

|

(1,0)

/

-

Newton’s algorithm in more
dimensions

e The Jacobian matrix, evaluated in x®, IS then

given by:
B < 2x(F) 2y(k))
(k) 1 1

20 2
J|5;<k>=< | 1y>

therefore the “correction” 8x® is given by the
solution of the system:

2x(F) 2y(k) | Sx(F) - 24y —1
1 1 (Sy(k) - L TY— 1

7 (k)

M2+ [y — 1

)

Newton’s algorithm Iin more
dimensions

Where the x® and y® are known, and therefore
we get the “correction” ox® as:

o D T (R A
5y 0) . 2B 4 (k) _ 1

_ 1 /2 —y® 2] 4 [y M) — 1
T oa®))\ =172 () (k) 4 y(k) — 1

and, finally, the next approximation of the
solution, given by:

< (kD)) } ((k)) N (S (k))
(k1) y) 5y)

Newton’s algorithm Iin more
dimensions

* By implementing this in a code, we get, for
iInstance when: x@=0.3, y©=0.2, £ =104

Iter. (1) y k1) 6z (F)|
1 3.65 -2.65 4.398300
2 2.11468 -1.11468 2.17127
3 1.38476 -0.38476 1.03227
4 1.08366 -0.08366 0.42581
5 1.00600 -0.00600 0.10983
6 1.00004 -3.55232 x107° 0.00843
7 1.00000 -1.26181 x10~? 5.02356 x107°

which converges to (1.0,0.0)!

Newton’s algorithm in more

dimensions
 Instead, when: x@=0.1, y©=0.3, £ =10"4:

Iter. g (F+1) y (k1) 6z (%)
1 -1.25 2.25 2.37171
2 -0.44643 1.44643 1.13642
3 -0.10529 1.10529 0.48244
4 -0.00916 1.00916 0.13595
5 -8.23523 x10~° 1.00008 0.01283
6 -6.78078 x10~2 1.00000 0.00012
7 -9.31642 x10~17 1.0 9.58948 x 10~

which converges to (0.0, 1.0)!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

