Zeros of functions

 Problem:

suppose you want to find the value of x which
satisfies the relation:

flx)=0  z¢€la,b]
namely the root of the equation!
. (or intermediate value theorem):

If f(x) IS a continuous function inside [a,b] and It takes
values f{a) and f{(b) in a and b, then it also takes any

value between f{a) and f(b) at some point inside the
interval!



Zeros of functions

* An important corollary of this theorem is that:

If the function changes its sign in f{a) and f{(b),
then it must have a root inside [a,b]!
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Zeros of functions

* Avery immediate method to find the root of the
equation could then be:

Fix the precision £ with which one wants to find the

solution;

Divide [a,b] in N subsequent subintervals [x,,x.,],
i=0, ..., N and x,=a, x,=b, Ax = Tiv1 — 2] <€

Scan all the subintervals and find the one for which:

f(xi) - f(wip1) <O

Now we have determined the zero with a precision

equal to Ax:
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Zeros of functions

* In a graphical representation for N=10:

O A X XpXgXyXg K7 KgXgh

 The solution is: a = (xg+x,)/2
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Zeros of functions

* This is a good method only when the number N
of subintervals is not too high, since for each
subinterval [x,x,,,] one has to evaluate the

product f(z;)- f(ziy1)N times, in the worst case!

* A more efficient algorithm: the bisection
algorithm!

> It belongs to the class of “
algorithms

> Like other algorithms of the same kind (e.g. FFT, we
will see later) lowers the number of required
operations.



Bisection algorithm

 The idea Is to build up a sequence of smaller
and smaller subintervals by halving the interval
at the previous step!

* At the first step of the sequence, one starts with
an interval a,=a, b,=>b.

 Then one evaluates the midpoint x, between q,

. 1
and b, To = 5(ao + bo)

 Now, unless the zero Is exactly in x,, It stays
either In [ay,x,] Or In [xy,b,].




Bisection algorithm

This is realized by looking at the products:
flao) - f(wo)  and  f(zo)- f(bo)

One of the two has to be < Q!

In case It is the first one, we let:
a,=agy, b,;=x,;

In case It Is the second one, we let:
a,=xq, b,=by;

and so on...



Bisection algorithm

ag X g




Bisection algorithm

aq X




Bisection algorithm
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Bisection algorithm
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Bisection algorithm
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Bisection algorithm

™~

<




Bisection algorithm

 How many iterations are needed in order to
compute the value of the zero with a given
precision £?

* We know that, at each iteration, the interval is
halved, namely the width w, of the interval In
which the zero Is at the i-th iteration Is:

wo =bg —ap=b—a at iteration 7 = O;
1 1

wy =b; —ay = 5@00 = §(b — a) at iteration 7 = 1;
1 1 . : .

we =by —as = —w; = —(b—a) at iteration i = 2;
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Bisection algorithm

e At the n-th iteration we have:

1
Wy, = 2—n(b—a)

* We stop the procedure when:
1

w, <€ = z—n(b—a)ge
1
= log, {Z—n(b—a)] < log, €

= —logy(2") +logy(b—a) <log, €
(b—a)

€

= logQ[ }Sn



Bisection algorithm

e Pros:

> The algorithm always gives a solution (provided
that the initial interval does indeed contains a
zero!)!

> The number of iterations required is known a
priori independently of the particular function f(x)!

e Cons:

— The algorithm can be very slow (large »!) if the
Initial interval (b-a) Is large and the required
precision (&) is small!



Newton’s algorithm

 The idea of Newton’s algorithm is to find a
succession of subsequent approximations of
the solution.

* Lagrange’s mean value theorem:

_et be f{(x) a real function which is continuous
and differentiable on the interval [a,b]. Then,
there exists some c In [a,b] such that:

f(b) — fla)
b—a

f'(c) =



Newton’s algorithm

 Now, let o be the root of the equation and x, a
value close to a. Then, by applying the previous
theorem to the interval [x,,a]:

f/(C) — f(Oé) o f(ﬂfo)

X — Xy

that is, there must be a value c In [x,,&] which
satisfies the equation:
f(xo)

f'(c)

= X —

since flax) = 0!



Newton's

algorithm

e Of course, if we knew the point ¢, we would
have solved the problem, since the relation

above gives us the va

* \We can then try to finc

ue of «.

a new value for the

solution, x;, by approximating ¢ with x,.

r1 — o —

f (o)
f'(z0)

* |n an analogous way, we can build up a

successions of values

(hopefully!) closer and

closer to the solution, as:

Thtl = Tk = 50

f(zk)

L



Newton’s algorithm

» Geometrical interpretation:
flzr) = |PQ)
PQ)

/
T) = —
0 3 f( k) ‘RP‘
Ll — ‘OP’

f(xy)

PR TR T ()
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= |OP| — = |OP| + |RP| = |OR|



Newton’s algorithm

» At the subsequent step:

Vi
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f(X et 1)

K+l =R
o

$k+2::1%+1'—!f%

$k+1)

[RQ'|/|RR|

f(@e41) = |RQ'|

: _ RO
Zi+1 = |OR]

= |OR| — |RR'| = |OR/|



Newton’s algorithm

* Pros:
> The convergence of the method is very fast!

> |t does not depend on the width of the interval in
which the root is located, but only on the initial

guess x,,
e Cons:

> However, the method may also not converge, it
depends on the shape of the function f{x);

> The number of iterations is not fixed a priori, but
depends on x,



Newton’s algorithm

* Two examples:
> Find the root of the equation:

e’ —1.5=0

In the interval [0,3];

> Find the root of the equation:

x I 0
3/2 +sin(mx) 2

In the Interval [0,6].



Newton’s algorithm

e |n the first case:

f(x) =¢e" — 1.5;
F@) ="
* In the second one:
x 1
f(z) = 3/2 +sin(rz) 2’
() = 3/2 + sin(wx) — xmw cos(mx)

3/2 + sin(mz)]”



Newton’s algorithm

e First case: x,=1, £=10-4
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Newton’s algorithm

e First case: x,=1, £=10-4

2 1 T
X . = 1.000000
15 |
X sy = 0551819
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Newton’s algorithm

e First case: x,=1, £=10-4
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¥ = 0551813
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Newton’s algorithm

e First case: x,=1, £=10-4

2
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Newton’s algorithm

e First case: x,=1, £=10-4

2

H = 0.405517

15 |
X a1 = 0.405465
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Newton’s algorithm

e Second case: x,=0.5, £=10+4

12

¥ = 0.500000
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Newton’s algorithm

e Second case: x,=0.5, £=10+4

12
X, = 0500000
10 |
X ks = 1.250000
8




Newton’s algorithm

e Second case: x,=0.5, £=10+4

12

¥ = 1.250000

X sy = 1.060411




Newton’s algorithm

e Second case: x,=0.5, £=10+4

12

¥ = 1.060411
10

X sy = 0.944600




Newton’s algorithm

e Second case: x,=0.5, £=10+4

12
X = 0.944600
10 |
X sy = 0.905276
8




Newton’s algorithm

e Second case: x,=0.5, £=10+4

12
X = 0.905276
10 |
X a1 = 0,901830
8




Newton’s algorithm

e Second case: x,=0.5, £=10+4

12
X = 0.901830
10 |
X a1 = 0.901807
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Newton’s algorithm

e Second case: x,=2.0, £=10+4
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Newton’s algorithm

e Second case: x,=2.0, £=10+4

12
X = 2.000000
10 |
X sy = 2.391998
8




Newton’s algorithm

e Second case: x,=2.0, £=10+4

12

Xy = 2391998

10 |
X sy = 51621833

No convergence!



Newton’s algorithm

e Second case: x,=3.0, £=10+4
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Newton’s algorithm

e Second case: x,=3.0, £=10+4

12

¥ = 3.000000
10

X sy = 2.691069




Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X\ = 2.691069
10 |
Xy = 2.190552
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Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X = 2.190552
10 |
X sy = 2.850812
8




Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X\ = 2.850812
10 |
X sy = 2.482739
8




Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X\ = 2.482739
10 |
X s q = 0.998063
8




Newton’s algorithm

e Second case: x,=3.0, £=10+4

12
X = 0.998063
10 |
X sy = 0.918559
8




Newton’s algorithm

e Second case: x,=3.0, £=10+4

12

H = 0918553
10

X a1 = 0.902350

and so onl!...



Newton’s algorithm

* In general, the best thing to do is:

- At first, use a method that always converges, like
the bisection method, even if it converges slowly,
with a rough precision, in order to limit the interval
In which the zero is supposed to exist;

- Then, use Newton’s method to find a quickly
converging solution;

- In case the second step does not converge, try a
different initial guess.

As often happens in life, a fair amount of
“good luck” is fundamental!



Newton’s algorithm Iin more
dimensions

* Quite often, one needs to find the roots of a
multi-dimensional system of transcendental
equations, like:

(fl(afl,ilig,...,l‘n) =0
< fQ(ZEl,.CUQ,...,CI}n) =0
\fn(xlnyV"axn) —

where f; are n functions:



Newton’s algorithm Iin more
dimensions

» Just to keep things simple, we can make an
analogy with the one-dimensional case.

 \WWe notice that:

2D (k) flzt®]
Flw®)]
can be re-written as:
Fe®7. {xum) — a2 ®) = fe® . ge® =

that Is, the product of the derivative by the
“correction” to the x® is equal to -f [x®].



Newton’s algorithm Iin more
dimensions

* [n n dimensions:
> The derivative Is substituted by the gradient of f;

> The scalar x® becomes a vector x® as well as the
“correction” ox® becomes a vector ox® ;

- The product becomes a “dot product” between the
gradient and the ox®.

 That Is, for the i-th function f; we have:
v filzM] - 6z = — filzV)]



Newton’s algorithm Iin more
dimensions

 Which may be written explicitly as:

Of1 (k) , 9N (k) O f1 () .
—— R S 5 _

8331 7 (k) &Cl i (9:132 = (k) 5332 * + axn (k) Ly fl[aj ]

0 f2 k) . Of2 (k) O f5 (k) )

o — ) oo+ == ) — —

. Y U L sz*) — ¢ 1K)
8371 7 (k) 53:1 + a.CEQ 7 (k) 2 + T axn — (k) Ln f [Qj ]
or, in matrix form: [ AR

~(k
J|£(k)5:ﬁ(k) = — fz[CE( )]

\ fulz®)]



Newton’s algorithm Iin more
dimensions

* Where J Is the Jacobian matrix:

ofi 9f 0 f1
/ dry Ox2 "7 Oxn \
Ofs  Of2 Of2
85131 8:132 T 8£Un
J =
\ Ofn  Ofn O fn )
85131 3332 s 8:13n

» The “correction” 8x® is then given by the solution
of a linear system of equations!



Newton’s algorithm Iin more
dimensions

e Example (n = 2!):
filmy) =24y —1=0

<
foz,y) =x+y—1=0

* The first equation of the system represents a
circle with center in the origin and radius = 1.

 The second equation represents the straight
line inclined of 3z /4 with respect to the x axis.

* The solution of such a system is given by the
Intersections between the two curves:



Newton’s algorithm Iin more
dimensions

|

(1,0)

/

-




Newton’s algorithm in more
dimensions

e The Jacobian matrix, evaluated in x®, IS then

given by:
B < 2x(F)  2y(k) )
(k) 1 1

20 2
J|5;<k>=< | 1y>

therefore the “correction” 8x® is given by the
solution of the system:

2x(F)  2y(k) | Sx(F) - 24y —1
1 1 (Sy(k) - L TY— 1

7 (k)

M2+ [y — 1

)



Newton’s algorithm Iin more
dimensions

Where the x® and y® are known, and therefore
we get the “correction” ox® as:

o D T (R A
5y 0) . 2B 4 (k) _ 1

_ 1 /2 —y® 2] 4 [y M) — 1
T oa®) )\ =172 () (k) 4 y(k) — 1

and, finally, the next approximation of the
solution, given by:

< (kD) ) } ( (k) ) N ( S (k) )
(k1) y ) 5y )




Newton’s algorithm Iin more
dimensions

* By implementing this in a code, we get, for
iInstance when: x@=0.3, y©=0.2, £ =104

Iter. (1) y k1) 6z (F)|
1 3.65 -2.65 4.398300
2 2.11468 -1.11468 2.17127
3 1.38476 -0.38476 1.03227
4 1.08366 -0.08366 0.42581
5  1.00600 -0.00600 0.10983
6  1.00004 -3.55232 x107° 0.00843
7  1.00000 -1.26181 x10~? 5.02356 x107°

which converges to (1.0,0.0)!



Newton’s algorithm in more

dimensions
 Instead, when: x@=0.1, y©=0.3, £ =10"4:

Iter. g (F+1) y (k1) 6z (%)
1 -1.25 2.25 2.37171
2 -0.44643 1.44643 1.13642
3 -0.10529 1.10529 0.48244
4 -0.00916 1.00916 0.13595
5 -8.23523 x10~°  1.00008 0.01283
6 -6.78078 x10~2  1.00000 0.00012
7 -9.31642 x10~17 1.0 9.58948 x 10~

which converges to (0.0, 1.0)!
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