
  

Zeros of functions

● Problem:

suppose you want to find the value of x which 
satisfies the relation:

namely the root of the equation!
● Bolzano’s theorem (or intermediate value theorem):

If f(x) is a continuous function inside [a,b] and it takes 
values f(a) and f(b) in a and b, then it also takes any 
value between f(a) and f(b) at some point inside the 
interval! 



  

Zeros of functions

● An important corollary of this theorem is that:

if the function changes its sign in f(a) and f(b), 
then it must have a root inside [a,b]!



  

Zeros of functions

● A very immediate method to find the root of the 
equation could then be:
– Fix the precision   with which one wants to find the 

solution;

– Divide [a,b] in N subsequent subintervals [xi,xi+1], 

i=0, …, N and x0=a, xN=b,                                 ;
– Scan all the subintervals and find the one for which:

– Now we have determined the zero with a precision 
equal to x:



  

Zeros of functions

● In a graphical representation for N=10:

● The solution is:  = (x6+x7)/2



  

Zeros of functions

● This is a good method only when the number N 
of subintervals is not too high, since for each 
subinterval [xi,xi+1] one has to evaluate the 
product                        N times, in the worst case!

● A more efficient algorithm: the bisection 
algorithm!
➢ It belongs to the class of “divide-and-conquer” 

algorithms

➢ Like other algorithms of the same kind (e.g. FFT, we 
will see later) lowers the number of required 
operations.



  

Bisection algorithm

● The idea is to build up a sequence of smaller 
and smaller subintervals by halving the interval 
at the previous step!

● At the first step of the sequence, one starts with 
an interval a0=a, b0=b.

● Then one evaluates the midpoint x0 between a0 
and b0:

● Now, unless the zero is exactly in x0, it stays 
either in [a0,x0] or in [x0,b0].



  

Bisection algorithm

● This is realized by looking at the products:

● One of the two has to be < 0!
● In case it is the first one, we let:

a1=a0, b1=x0;

● In case it is the second one, we let:

a1=x0, b1=b0;

and so on…



  

Bisection algorithm



  

Bisection algorithm



  

Bisection algorithm



  

Bisection algorithm



  

Bisection algorithm



  

Bisection algorithm



  

Bisection algorithm

● How many iterations are needed in order to 
compute the value of the zero with a given 
precision ?

● We know that, at each iteration, the interval is 
halved, namely the width wi of the interval in 

which the zero is at the i-th iteration is:



  

Bisection algorithm

● At the n-th iteration we have:

● We stop the procedure when:



  

Bisection algorithm

● Pros:
➢ The algorithm always gives a solution (provided 

that the initial interval does indeed contains a 
zero!)!

➢ The number of iterations required is known a 
priori independently of the particular function f(x)!

● Cons:
– The algorithm can be very slow (large n!) if the 

initial interval (b-a) is large and the required 
precision () is small!



  

Newton’s algorithm

● The idea of Newton’s algorithm is to find a 
succession of subsequent approximations of 
the solution.

● Lagrange’s mean value theorem:

Let be f(x) a real function which is continuous 
and differentiable on the interval [a,b]. Then, 
there exists some c in [a,b] such that:



  

Newton’s algorithm

● Now, let   be the root of the equation and x0 a 
value close to . Then, by applying the previous 
theorem to the interval [x0,]:

that is, there must be a value c in [x0,] which 
satisfies the equation:

since f() = 0!



  

Newton’s algorithm

● Of course, if we knew the point c, we would 
have solved the problem, since the relation 
above gives us the value of .

● We can then try to find a new value for the 
solution, x1, by approximating c with x0:

● In an analogous way, we can build up a 
successions of values (hopefully!) closer and 
closer to the solution, as:  



  

Newton’s algorithm

● Geometrical interpretation:



  

Newton’s algorithm

● At the subsequent step:



  

Newton’s algorithm

● Pros:
➢ The convergence of the method is very fast!

➢ It does not depend on the width of the interval in 
which the root is located, but only on the initial 
guess x0;

● Cons:
➢ However, the method may also not converge, it 

depends on the shape of the function f(x);
➢ The number of iterations is not fixed a priori, but 

depends on x0!



  

Newton’s algorithm

● Two examples:
➢ Find the root of the equation:

in the interval [0,3];

➢ Find the root of the equation:

in the interval [0,6].



  

Newton’s algorithm

● In the first case:

● In the second one:



  

Newton’s algorithm

● First case: x0=1, =10-4



  

Newton’s algorithm

● First case: x0=1, =10-4



  

Newton’s algorithm

● First case: x0=1, =10-4



  

Newton’s algorithm

● First case: x0=1, =10-4



  

Newton’s algorithm

● First case: x0=1, =10-4



  

Newton’s algorithm

● Second case: x0=0.5, =10-4



  

Newton’s algorithm

● Second case: x0=0.5, =10-4



  

Newton’s algorithm

● Second case: x0=0.5, =10-4



  

Newton’s algorithm

● Second case: x0=0.5, =10-4



  

Newton’s algorithm

● Second case: x0=0.5, =10-4



  

Newton’s algorithm

● Second case: x0=0.5, =10-4



  

Newton’s algorithm

● Second case: x0=0.5, =10-4



  

Newton’s algorithm

● Second case: x0=2.0, =10-4



  

Newton’s algorithm

● Second case: x0=2.0, =10-4



  

Newton’s algorithm

● Second case: x0=2.0, =10-4

No convergence!



  

Newton’s algorithm

● Second case: x0=3.0, =10-4



  

Newton’s algorithm

● Second case: x0=3.0, =10-4



  

Newton’s algorithm

● Second case: x0=3.0, =10-4



  

Newton’s algorithm

● Second case: x0=3.0, =10-4



  

Newton’s algorithm

● Second case: x0=3.0, =10-4



  

Newton’s algorithm

● Second case: x0=3.0, =10-4



  

Newton’s algorithm

● Second case: x0=3.0, =10-4



  

Newton’s algorithm

● Second case: x0=3.0, =10-4

and so on!...



  

Newton’s algorithm

● In general, the best thing to do is:
–  At first, use a method that always converges, like 

the bisection method, even if it converges slowly, 
with a rough precision, in order to limit the interval 
in which the zero is supposed to exist;

–  Then, use Newton’s method to find a quickly 
converging solution;

–  In case the second step does not converge, try a 
different initial guess.

As often happens in life, a fair amount of 
“good luck” is fundamental!



  

Newton’s algorithm in more 
dimensions

● Quite often, one needs to find the roots of a 
multi-dimensional system of transcendental 
equations, like:

where fi are n functions:



  

Newton’s algorithm in more 
dimensions

● Just to keep things simple, we can make an 
analogy with the one-dimensional case.

● We notice that:

can be re-written as:

that is, the product of the derivative by the 
“correction” to the x(k) is equal to -f [x(k)].



  

Newton’s algorithm in more 
dimensions

● In n dimensions:

➢ The derivative is substituted by the gradient of f ;
➢ The scalar x(k) becomes a vector x(k) as well as the 

“correction” x(k) becomes a vector x(k) ;

– The product becomes a “dot product” between the 
gradient and the x(k).

● That is, for the i-th function fi  we have:



  

Newton’s algorithm in more 
dimensions

● Which may be written explicitly as:

or, in matrix form:



  

Newton’s algorithm in more 
dimensions

● Where J is the Jacobian matrix:

● The “correction” x(k) is then given by the solution 
of a linear system of equations!



  

Newton’s algorithm in more 
dimensions

● Example (n = 2!):

● The first equation of the system represents a 
circle with center in the origin and radius = 1.

● The second equation represents the straight 
line inclined of 3/4 with respect to the x axis.

● The solution of such a system is given by the 
intersections between the two curves:



  

Newton’s algorithm in more 
dimensions

(0,1)

(1,0)



  

Newton’s algorithm in more 
dimensions

● The Jacobian matrix, evaluated in x(k), is then 
given by:

therefore the “correction” x(k) is given by the 
solution of the system:



  

Newton’s algorithm in more 
dimensions

Where the x(k) and y(k) are known, and therefore 
we get the “correction” x(k) as:

and, finally, the next approximation of the 
solution, given by:



  

Newton’s algorithm in more 
dimensions

● By implementing this in a code, we get, for 
instance when: x(0)=0.3, y(0)=0.2, =10^-4:

which converges to (1.0,0.0)!



  

Newton’s algorithm in more 
dimensions

● Instead, when: x(0)=0.1, y(0)=0.3, =10^-4:

which converges to (0.0, 1.0)!
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