Zeros of functions

- Problem:
suppose you want to find the value of x which satisfies the relation:

$$
f(x)=0 \quad x \in[a, b]
$$

namely the root of the equation!

- Bolzano's theorem (or intermediate value theorem): If $f(x)$ is a continuous function inside $[a, b]$ and it takes values $f(a)$ and $f(b)$ in a and b, then it also takes any value between $f(a)$ and $f(b)$ at some point inside the interval!

Zeros of functions

- An important corollary of this theorem is that: if the function changes its sign in $f(a)$ and $f(b)$, then it must have a root inside $[a, b]$!

Zeros of functions

- A very immediate method to find the root of the equation could then be:
- Fix the precision ε with which one wants to find the solution;
- Divide $[a, b]$ in N subsequent subintervals $\left[x_{i}, x_{i+1}\right]$, $i=0, \ldots, N$ and $x_{0}=a, x_{N}=b, \Delta x=\left|x_{i+1}-x_{i}\right| \leq \epsilon ;$
- Scan all the subintervals and find the one for which:

$$
f\left(x_{i}\right) \cdot f\left(x_{i+1}\right)<0
$$

- Now we have determined the zero with a precision equal to Δx :

$$
\alpha=\frac{1}{2}\left(x_{i}+x_{i+1}\right) \pm \frac{1}{2} \Delta x
$$

Zeros of functions

- In a graphical representation for $N=10$:

- The solution is: $\alpha=\left(x_{6}+x_{7}\right) / 2$

Zeros of functions

- This is a good method only when the number N of subintervals is not too high, since for each subinterval $\left[x_{i}, x_{i+1}\right]$ one has to evaluate the product $f\left(x_{i}\right) \cdot f\left(x_{i+1}\right) N$ times, in the worst case!
- A more efficient algorithm: the bisection algorithm!
> It belongs to the class of "divide-and-conquer" algorithms
> Like other algorithms of the same kind (e.g. FFT, we will see later) lowers the number of required operations.

Bisection algorithm

- The idea is to build up a sequence of smaller and smaller subintervals by halving the interval at the previous step!
- At the first step of the sequence, one starts with an interval $a_{0}=a, b_{0}=b$.
- Then one evaluates the midpoint x_{0} between a_{0} and $b_{0}: \quad x_{0}=\frac{1}{2}\left(a_{0}+b_{0}\right)$
- Now, unless the zero is exactly in x_{0}, it stays either in $\left[a_{0}, x_{0}\right]$ or in $\left[x_{0}, b_{0}\right]$.

Bisection algorithm

- This is realized by looking at the products:

$$
f\left(a_{0}\right) \cdot f\left(x_{0}\right) \quad \text { and } \quad f\left(x_{0}\right) \cdot f\left(b_{0}\right)
$$

- One of the two has to be < 0!
- In case it is the first one, we let:

$$
a_{1}=a_{0}, b_{1}=x_{0}
$$

- In case it is the second one, we let:

$$
\begin{aligned}
& a_{1}=x_{0}, b_{1}=b_{0} ; \\
& \text { and so on... }
\end{aligned}
$$

Bisection algorithm

Bisection algorithm

- How many iterations are needed in order to compute the value of the zero with a given precision ε ?
- We know that, at each iteration, the interval is halved, namely the width w_{i} of the interval in which the zero is at the i-th iteration is:

$$
\begin{aligned}
& w_{0}=b_{0}-a_{0}=b-a \quad \text { at iteration } \quad i=0 \\
& w_{1}=b_{1}-a_{1}=\frac{1}{2} w_{0}=\frac{1}{2}(b-a) \quad \text { at iteration } \quad i=1 \\
& w_{2}=b_{2}-a_{2}=\frac{1}{2} w_{1}=\frac{1}{2^{2}}(b-a) \quad \text { at iteration } \quad i=2
\end{aligned}
$$

Bisection algorithm

- At the n-th iteration we have:

$$
w_{n}=\frac{1}{2^{n}}(b-a)
$$

- We stop the procedure when:

$$
\begin{aligned}
& w_{n} \leq \epsilon \quad \Rightarrow \quad \frac{1}{2^{n}}(b-a) \leq \epsilon \\
\Rightarrow & \log _{2}\left[\frac{1}{2^{n}}(b-a)\right] \leq \log _{2} \epsilon \\
\Rightarrow & -\log _{2}\left(2^{n}\right)+\log _{2}(b-a) \leq \log _{2} \epsilon \\
\Rightarrow & \log _{2}\left[\frac{(b-a)}{\epsilon}\right] \leq n
\end{aligned}
$$

Bisection algorithm

- Pros:
> The algorithm always gives a solution (provided that the initial interval does indeed contains a zero!)!
> The number of iterations required is known a priori independently of the particular function $f(x)$!
- Cons:
- The algorithm can be very slow (large n !) if the initial interval ($b-a$) is large and the required precision (ε) is small!

Newton's algorithm

- The idea of Newton's algorithm is to find a succession of subsequent approximations of the solution.
- Lagrange's mean value theorem:

Let be $f(x)$ a real function which is continuous and differentiable on the interval $[a, b]$. Then, there exists some c in $[a, b]$ such that:

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Newton's algorithm

- Now, let α be the root of the equation and x_{0} a value close to α. Then, by applying the previous theorem to the interval $\left[x_{0}, \alpha\right]$:

$$
f^{\prime}(c)=\frac{f(\alpha)-f\left(x_{0}\right)}{\alpha-x_{0}}
$$

that is, there must be a value c in $\left[x_{0}, \alpha\right]$ which satisfies the equation:

$$
\alpha=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}(c)}
$$

since $f(\alpha)=0$!

Newton's algorithm

- Of course, if we knew the point c, we would have solved the problem, since the relation above gives us the value of α.
- We can then try to find a new value for the solution, x_{1}, by approximating c with x_{0} :

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

- In an analogous way, we can build up a successions of values (hopefully!) closer and closer to the solution, as:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Newton's algorithm

- Geometrical interpretation:

$$
\begin{aligned}
f\left(x_{k}\right) & =|P Q| \\
f^{\prime}\left(x_{k}\right) & =-\frac{|P Q|}{|R P|} \\
x_{k} & =|O P|
\end{aligned}
$$

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=|O P|-\frac{|P Q|}{-|P Q| /|R P|}=|O P|+|R P|=|O R|
$$

Newton's algorithm

- At the subsequent step:

$$
\begin{aligned}
f\left(x_{k+1}\right) & =\left|R Q^{\prime}\right| \\
f^{\prime}\left(x_{k+1}\right) & =\frac{\left|R Q^{\prime}\right|}{\left|R R^{\prime}\right|} \\
x_{k+1} & =|O R|
\end{aligned}
$$

$$
x_{k+2}=x_{k+1}-\frac{f\left(x_{k+1}\right)}{f^{\prime}\left(x_{k+1}\right)}=|O R|-\frac{\left|R Q^{\prime}\right|}{\left|R Q^{\prime}\right| /\left|R R^{\prime}\right|}=|O R|-\left|R R^{\prime}\right|=\left|O R^{\prime}\right|
$$

Newton's algorithm

- Pros:
> The convergence of the method is very fast!
> It does not depend on the width of the interval in which the root is located, but only on the initial guess x_{0};
- Cons:
> However, the method may also not converge, it depends on the shape of the function $f(x)$;
> The number of iterations is not fixed a priori, but depends on x_{0} !

Newton's algorithm

- Two examples:
> Find the root of the equation:

$$
e^{x}-1.5=0
$$

in the interval [0,3];
> Find the root of the equation:

$$
\frac{x}{3 / 2+\sin (\pi x)}-\frac{1}{2}=0
$$

in the interval $[0,6]$.

Newton's algorithm

- In the first case:

$$
\begin{aligned}
f(x) & =e^{x}-1.5 \\
f^{\prime}(x) & =e^{x}
\end{aligned}
$$

- In the second one:

$$
\begin{aligned}
f(x) & =\frac{x}{3 / 2+\sin (\pi x)}-\frac{1}{2} \\
f^{\prime}(x) & =\frac{3 / 2+\sin (\pi x)-x \pi \cos (\pi x)}{[3 / 2+\sin (\pi x)]^{2}}
\end{aligned}
$$

Newton's algorithm

- First case: $x_{0}=1, \varepsilon=10^{-4}$

Newton's algorithm

- Second case: $x_{0}=0.5, \varepsilon=10-4$

Newton's algorithm

- Second case: $x_{0}=2.0, \varepsilon=10-4$

Newton's algorithm

- Second case: $x_{0}=2.0, \varepsilon=10-4$

Newton's algorithm

- Second case: $x_{0}=2.0, \varepsilon=10-4$

Newton's algorithm

- Second case: $x_{0}=3.0, \varepsilon=10-4$

Newton's algorithm

- In general, the best thing to do is:
- At first, use a method that always converges, like the bisection method, even if it converges slowly, with a rough precision, in order to limit the interval in which the zero is supposed to exist;
- Then, use Newton's method to find a quickly converging solution;
- In case the second step does not converge, try a different initial guess.
As often happens in life, a fair amount of "good luck" is fundamental!

Newton's algorithm in more dimensions

- Quite often, one needs to find the roots of a multi-dimensional system of transcendental equations, like:

$$
\begin{cases}f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =0 \\ f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =0 \\ \ldots & =0 \\ f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =0\end{cases}
$$

where f_{i} are n functions:

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Newton's algorithm in more dimensions

- Just to keep things simple, we can make an analogy with the one-dimensional case.
- We notice that:

$$
x^{(k+1)}=x^{(k)}-\frac{f\left[x^{(k)}\right]}{f^{\prime}\left[x^{(k)}\right]}
$$

can be re-written as:

$$
f^{\prime}\left[x^{(k)}\right] \cdot\left[x^{(k+1)}-x^{(k)}\right]=f^{\prime}\left[x^{(k)}\right] \cdot \delta x^{(k)}=-f\left[x^{(k)}\right]
$$

that is, the product of the derivative by the "correction" to the $x^{(k)}$ is equal to $-f\left[x^{(k)}\right]$.

Newton's algorithm in more dimensions

- In n dimensions:
> The derivative is substituted by the gradient of f;
> The scalar $x^{(k)}$ becomes a vector $\bar{x}(k)$ as well as the "correction" $\delta x^{(k)}$ becomes a vector $\delta \overline{x^{(k)}}$;
- The product becomes a "dot product" between the gradient and the $\bar{\delta} \bar{x}(k)$.
- That is, for the i-th function f_{i} we have:

$$
\nabla f_{i}\left[\bar{x}^{(k)}\right] \cdot \delta \bar{x}^{(k)}=-f_{i}\left[\bar{x}^{(k)}\right]
$$

Newton's algorithm in more dimensions

- Which may be written explicitly as:
$\left.\frac{\partial f_{1}}{\partial x_{1}}\right|_{\bar{x}^{(k)}} \delta x_{1}^{(k)}+\left.\frac{\partial f_{1}}{\partial x_{2}}\right|_{\bar{x}^{(k)}} \delta x_{2}^{(k)}+\ldots+\left.\frac{\partial f_{1}}{\partial x_{n}}\right|_{\bar{x}^{(k)}} \delta x_{n}^{(k)}=-f_{1}\left[\bar{x}^{(k)}\right]$
$\left.\frac{\partial f_{2}}{\partial x_{1}}\right|_{\bar{x}^{(k)}} \delta x_{1}^{(k)}+\left.\frac{\partial f_{2}}{\partial x_{2}}\right|_{\bar{x}^{(k)}} \delta x_{2}^{(k)}+\ldots+\left.\frac{\partial f_{2}}{\partial x_{n}}\right|_{\bar{x}^{(k)}} \delta x_{n}^{(k)}=-f_{2}\left[\bar{x}^{(k)}\right]$
$\left.\frac{\partial f_{n}}{\partial x_{1}}\right|_{\bar{x}^{(k)}} \delta x_{1}^{(k)}+\left.\frac{\partial f_{n}}{\partial x_{2}}\right|_{\bar{x}^{(k)}} \delta x_{2}^{(k)}+\ldots+\left.\frac{\partial f_{n}}{\partial x_{n}}\right|_{\bar{x}^{(k)}} \delta x_{n}^{(k)}=-f_{n}\left[\bar{x}^{(k)}\right]$
or, in matrix form:

$$
\left.J\right|_{\bar{x}^{(k)}} \delta \bar{x}^{(k)}=-\left(\begin{array}{c}
f_{1}\left[\bar{x}^{(k)}\right] \\
f_{2}\left[\bar{x}^{(k)}\right] \\
\cdots \\
f_{n}\left[\bar{x}^{(k)}\right]
\end{array}\right)
$$

Newton's algorithm in more dimensions

- Where J is the Jacobian matrix:

$$
J=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right)
$$

- The "correction" $\delta x^{-(k)}$ is then given by the solution of a linear system of equations!

Newton's algorithm in more dimensions

- Example ($n=2!$):

$$
\left\{\begin{array}{l}
f_{1}(x, y)=x^{2}+y^{2}-1=0 \\
f_{2}(x, y)=x+y-1=0
\end{array}\right.
$$

- The first equation of the system represents a circle with center in the origin and radius $=1$.
- The second equation represents the straight line inclined of $3 \pi / 4$ with respect to the x axis.
- The solution of such a system is given by the intersections between the two curves:

Newton's algorithm in more dimensions

Newton's algorithm in more dimensions

- The Jacobian matrix, evaluated in $x^{(k)}$, is then given by:

$$
\left.J\right|_{\bar{x}^{(k)}}=\left.\left(\begin{array}{cc}
2 x & 2 y \\
1 & 1
\end{array}\right)\right|_{\bar{x}^{(k)}}=\left(\begin{array}{cc}
2 x^{(k)} & 2 y^{(k)} \\
1 & 1
\end{array}\right)
$$

therefore the "correction" $\delta \bar{x}^{(k)}$ is given by the solution of the system:

$$
\begin{aligned}
\left(\begin{array}{cc}
2 x^{(k)} & 2 y^{(k)} \\
1 & 1
\end{array}\right) \cdot\binom{\delta x^{(k)}}{\delta y^{(k)}} & =-\left.\binom{x^{2}+y^{2}-1}{x+y-1}\right|_{\tilde{x}^{(k)}} \\
& =-\binom{\left[x^{(k)}\right]^{2}+\left[y^{(k)}\right]^{2}-1}{x^{(k)}+y^{(k)}-1}
\end{aligned}
$$

Newton's algorithm in more dimensions

Where the $x^{(k)}$ and $y^{(k)}$ are known, and therefore we get the "correction" $\delta x^{-(k)}$ as:

$$
\begin{aligned}
& \binom{\delta x^{(k)}}{\delta y^{(k)}}=-\left.J^{-1}\right|_{\tilde{x}^{(k)}}\binom{\left[x^{(k)}\right]^{2}+\left[y^{(k)}\right]^{2}-1}{x^{(k)}+y^{(k)}-1} \\
& =-\frac{1}{x^{(k)}-y^{(k)}}\left(\begin{array}{cc}
1 / 2 & -y^{(k)} \\
-1 / 2 & x^{(k)}
\end{array}\right)\binom{\left.\left[x^{(k)}\right]\right]^{2}+\left[y^{(k)}\right]^{2}-1}{x^{(k)}+y^{(k)}-1}
\end{aligned}
$$

and, finally, the next approximation of the solution, given by:

$$
\binom{x^{(k+1)}}{y^{(k+1)}}=\binom{x^{(k)}}{y^{(k)}}+\binom{\delta x^{(k)}}{\delta y^{(k)}}
$$

Newton's algorithm in more dimensions

- By implementing this in a code, we get, for instance when: $x^{(0)}=0.3, y^{(0)}=0.2, \varepsilon=10^{\wedge-4}$:

Iter.	$x^{(k+1)}$	$y^{(k+1)}$	$\left\|\delta \bar{x}^{(k)}\right\|$
1	3.65	-2.65	4.398300
2	2.11468	-1.14468	2.17127
3	1.38476	-0.38476	1.03227
4	1.08366	-0.08366	0.42581
5	1.00600	-0.00600	0.10983
6	1.00004	-3.55232×10^{-5}	0.00843
7	1.00000	-1.26181×10^{-9}	5.02356×10^{-5}

which converges to (1.0,0.0)!

Newton's algorithm in more dimensions

- Instead, when: $x^{(0)}=0.1, y^{(0)}=0.3, \varepsilon=10^{\wedge-4}:$

Iter.	$x^{(k+1)}$	$y^{(k+1)}$	$\left\|\delta \bar{x}^{(k)}\right\|$
1	-1.25	2.25	2.37171
2	-0.44643	1.44643	1.13642
3	-0.10529	1.10529	0.48244
4	-0.00916	1.00916	0.13595
5	-8.23523×10^{-5}	1.00008	0.01283
6	-6.78078×10^{-9}	1.00000	0.00012
7	-9.31642×10^{-17}	1.0	9.58948×10^{-9}

which converges to (0.0, 1.0)!

