
  

Spectral methods

● We have seen, so far, Finite Differences 
Methods (FDM) to solve Partial Differential 
Equations (PDE). 

● In this approach, we approximated the spatial 
derivatives in a point with linear combinations of 
the values of the functions in the points nearby.

● This is a “local” method, in the sense that the 
precision depends on how many points we 
consider in the approximations.



  

Spectral methods

● Spectral methods use a completely different 
approach.

● Let us suppose we have to solve an equation:

where:
–

– F(u) is an operator containing spatial derivatives of 
u only.

– some kind of boundary conditions are given and 
u0(x) is the initial condition.



  

Spectral methods

● We suppose the solution u(x,t) belong to some 
Hilbert space H2, that is:

● Let {n(x)} be a basis of such function space. 

Then, we can write:

where an(t) are the expansion coefficients of u 

on the basis functions n.



  

Spectral methods

● Let us suppose, for the moment, that the basis 
functions {n(x)} are chosen in such a way to 

satisfy the boundary conditions to impose.

● Since F(u) is another function belonging to H2, 
it will have its own expansion on the basis 
{n(x)} with some coefficients cn(t):

● In general, the cn depend on the an! 



  

Spectral methods

● We can then substitute the developments of the 
functions in the equations:



  

Spectral methods

● Since the {n(x)} are basis functions, we have:

● We know that, at t=0:

because U(x) also belongs to H2 and therefore 

can be developped on the basis {n(x)}.



  

Spectral methods

● Therefore, we write the original equation as the 
system:

with initial conditions: 

namely we have transformed the partial 
differential equation (PDE) in an infinite set of 
ordinary differential equations (ODE), that can 
be solved analytically (in the simplest cases, 
almost none!) or numerically with one of the 
schemes we know for solving ODEs (Euler, 
Runge-Kutta, etc.)!



  

Spectral methods

● Once we know how to find the coefficients an(t) 
(starting from the initial condition an(t=0)=Un), 

we can reconstruct the u(x,t) at any subsequent 
time t>0, through the relation between u(x,t) 
and the an:

● A simple example: the parabolic diffusion 
equation:



  

Spectral methods

● With initial conditions:
● Boundary conditions:
● A suitable base for which boundary conditions 

are automatically satisfied is:
● Then, we have:



  

Spectral methods

● The original PDE becomes the set of infinite 
equations:

● From the initial condition:

● That is:



  

Spectral methods

● And, finally, the solution:

● Notes:

1)This is an exact (“global”!!!) solution!!! 

2)The coefficients cn depend on an in a simple 
way, then we could find an analytical 
solution. In the general case we should have 
applied a numerical time scheme. 



  

Spectral methods

● A more complicated case: the Burger’s 
equation with =0:

● In this case, we have to choose periodic 
boundary conditions, then a “natural” basis is 
the Fourier basis:

● We have:



  

Spectral methods

● In this case:
● This case is more difficult because the 

equation is non-linear!
● Problems:

1)Numerically, we cannot use an expansion from 0 to 
infinity!

2)General method for computing the coefficients for a 
generic basis {n(x)};

3)How to compute the non-linear terms?

4)Boundary conditions?



  

Spectral methods

● In general, we do not need information on each point 
of the domain x, but we can consider a limited number 
N+1 of grid-points xj which are representative of the 

behavior of the unknown u(x,t) on each point xj.

● In this simplified view, we can use only N+1 basis 
functions to approximate the unknown u(x,t):

● A first problem in this approach is to understand the 
error due to the truncation... 



  

Spectral methods

● We postpone this problem for later…

● How to compute the coefficients an in this 
approximation?

● We have chosen N+1 points: xj = a + j x, j=0,...N

that is, it is possible to compute the uN(xj), once 

the an are known through a simple matrix-vector 
multiplication and vice-versa.



  

Fourier Spectral methods

● A new problem is that this computation 
requires (N+1)2 multiplications…

● However, there is at least one case in which 
the number of operations can be drastically 
reduced, that is the Fourier basis for periodic 
functions, where the FFT algorithm allows to 
compute the coefficients of the expansion (or, 
vice-versa, the values of the function starting 
from the coefficients) in N lg2N operations!



  

Fourier Spectral methods

● For this reason, if the boundary conditions 
allow this, namely if we have periodicity at the 
boundaries, we will always use the Fourier 
basis for the application of the spectral method!

● Another problem is due to the fact that, when 
non-linear terms are present in the equation, 
the computation of the cn terms requires 

anyway N2 operations, due to the products in 
the spectral space.



  

Fourier Spectral methods

● This problem can be overcome by using the so-
called pseudo-spectral method, that consists in 
computing the non-linear terms in the physical 
space, instead of the spectral space!

● This allows the computation of the non-linear terms 
in a number of operations proportional to N lg2N.

● Practically, we compute the coefficients of the first 
derivative of u (N multiplications), inverse transform 
them (N lg2N operations), multiply the quantity by u 

(N multiplications), then transform again the result in 
the Fourier space (another N lg2N operations).



  

Fourier Spectral methods

● Finally, we can show that the Fourier coefficient 
an decreases with n faster than any power of n:



  

Fourier Spectral methods

● Where a2p
n represents the Fourier coefficients of 

the 2p-th derivative and an the coefficients of the 

original function u(x).
● Therefore, if we can derive u(x) an infinite number 

of times (          ), this shows that an tends to zero 

faster than any integer power of 1/n, that is an 

decreases quickly with n!

● This ensures that the approximation is really very 
good, that is spectral methods are really very 
precise, with respect to FDM!



  

Fourier Spectral methods

● A practical example: the dissipative Burgers 
equation:

● In this case:
● Suppose the following expansions hold:



  

Fourier Spectral methods

● We arrive to the following system of ODEs:

where the values of an at t=0 are known from 

the initial condition for u(x,t=0).
● Let us solve numerically this system of 

equations with a simple Forward Euler time 
scheme:

where h is the time step and k the time index.



  

Fourier Spectral methods

● We can split the computation of cn into two parts, the 
first related to the non-linear term, the second to the 
dissipative term:

● To compute c’n, we have to use the pseudo-spectral 
method:
1)compute the Fourier coefficients of the first derivative:

2)FFT-1 these coefficients to find the first derivative in the 
physical space

3)multiply u for the first derivative 

4)FFT again the result to get the c’n



  

Fourier Spectral methods

● The computation of  c”n is straightforward:

● Adding up the two terms we get the cn and, therefore, 

the an at the subsequent time step, and so on…

● All this requires a number of operations 
proportional to N lg2N!

● Of course, all considerations made for FDM 
concerning stability of the numerical scheme and 
evaluation of the dissipation, still hold:



  

Chebyshev Spectral methods

● All the considerations made above are valid when 
we have periodic boundary conditions.

● What to do when this simple assumption is not 
satisfied, namely we have, for instance, Dirichlet 
or Neumann (or mixed) boundary conditions?

● Problems:
1)Is there a basis where it is possible to keep into 

account the boundary conditions we want to impose?

2)Does this basis allow a fast and efficient evaluation 
of the coefficients?



  

Chebyshev Spectral methods

● The answer to all these questions is positive and the 
basis is the one formed by the Chebyshev’s 
polynomials!

● It is easy to show they are indeed polynomials:

and, from the recurrence relation:

one obtains that Tn(x) is indeed a n-degree polynomial!



  

Chebyshev Spectral methods

● It is possible to show they are solution of the 
following eigenvalue problem:

where the functions W(x) and p(x) are defined 
as:

● The Tn are orthogonal in the norm:



  

Chebyshev Spectral methods

● This allows to compute the coefficients as:

● The very nice property of Chebyshev’s 
polynomials is that a suitable (uneven!) choice 
of the grid points in the domain allows the 
computation of the coefficients an in terms of a 
(cosine) Fourier transform!

● This allows the use of the FFT algorithm to 
compute the coefficients!



  

Chebyshev Spectral methods

● Let us consider in the interval [-1,+1], N +1 
grid-points, arranged as follows:

● This is called Gauss-Lobatto distribution of grid-
points. An alternative is the Gauss distribution:

● In the former, the points are more dense on 
the boundaries, in the latter at the center.



  

Chebyshev Spectral methods

● In the first case, for instance, the values:

are evenly distributed in the interval [0,].
● Therefore, by changing the variable from x to  

in the Chebyshev coefficient an:



  

Chebyshev Spectral methods

● Notice that the grid in   is indeed evenly 
spaced, as required by the FFT algorithm!

● For a correct evaluation of the coefficients of 
the RHS F(u) of the equation, we need to know 
an expression for the Chebyshev coefficient of 
the first and second derivatives of a generic 
function u(x).

● From the recurrence relation:



  

Chebyshev Spectral methods

● Where:

● We get finally the expressions between the 
Chebyshev coefficients of the first (an’) and 

second derivatives (an”) of u(x) as a function of 

the coefficients an of u(x):



  

Chebyshev Spectral methods

● Where:

● Notice that in a’, the coefficients for n greater 
than N-1 and N-2 in a” are vanishing! This is 
where the boundary conditions come into 
play!

● In fact, if we did not use the boundary 
conditions, the first and second derivatives 
would play no role in the evolution, and this 
is wrong!



  

Chebyshev Spectral methods

● To keep into account the boundary conditions 
we have to evolve in time only the coefficients 
up to N-2. The latter two coefficients will be 
computed by imposing the boundary conditions!

● We know from the properties of the Chebyshev 
polynomials (see, e.g., slides on the boundary 
value problems!) that:



  

Chebyshev Spectral methods

● For instance, for Dirichlet b.c., if

we have to evolve the equations up to N-2 for 
the Chebyshev coefficients, and then use the 
b.c. to find the last two coefficients at next time 
step as a function of the others. For instance, 
for a Forward-Euler scheme:



  

Chebyshev Spectral methods

● From the last two equations (supposing N is 
even!), we get:

where the coefficients an
k+1 are obtained by 

solving the time scheme (first relations in the 
previous slide) for n = 0,…,N-2!



  

Chebyshev Spectral methods

● In other words:

1)We solve the equations of the scheme for an up 

to n=N-2;

2)We combine these coefficients in the sums at 
RHS of the last two equations and we solve the 
2x2 system for the coefficients aN-1 and aN.

● A similar calculation is possible for Neumann 
and mixed b.c. (one has to use relations for 
Tn(+1), Tn(-1) and T’n(+1), T’n(-1), instead!).



  

Chebyshev Spectral methods

● Final remark: to use the FFT to evaluate the 
Chebyshev coefficients we have to use a non-
evenly spaced grid and that can give a very 
strict CFL condition for the time evolution!

● This problem often needs to be solved by using 
implicit time schemes, with all the difficulties 
involved.
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