
  

Ordinary Differential Equations

● We call Ordinary Differential Equation (ODE) of n-
th order in the variable x, a relation of the kind:

● where L  is an operator. If it is a linear operator, we 
call the equation linear differential equation, 
otherwise non-linear differential equation.

● The existence and uniqueness Cauchy theorem 
ensures that the solution exists and is unique, under 
appropriate conditions, only in the case of linear 
differential equations.



  

Ordinary Differential Equations

● If L  is linear, and its coefficients are constants with 
respect to x, we call the equation: linear 
differential equation with constant coefficients.

● Examples:
➢ 2-nd degree, linear ODE with constant coefficients:

➢ 1-st degree, linear ODE with non-constant 
coefficients:

➢ Non-linear ODE:



  

Ordinary Differential Equations

● Ordinary differential equations are mainly 
distinguished into two categories:

➢ Initial value problems, where the equation is 
represented by a single independent variable 
(e.g. the time) which varies along a specific 
direction;

➢ Boundary value problems, where the equation 
is solved for all values of the independent 
variable bounded in a given domain (for 
example,              )



  

Ordinary Differential Equations

● Example of an initial value problem:

Newton’s law for a point moving along an axis

● Here t > 0 is the independent variable, x(t) is 
the coordinate of the point along the axis, 
namely the dependent variable, m is the mass 
of the point and F the sum of all the forces 
acting on the point (which may depend, in turn, 
on time, position and speed of the point).



  

Ordinary Differential Equations

● Example of boundary value problems:

Poisson’s equation for the electrostatic potential 
generated by a spherical distribution of charges

● Here                 is the radius, the independent 
variable, V(r) is the electrostatic potential, 
the dependent variable, (r) is a known 
function representing the distribution of 
charges and   the dielectric constant. 



  

Ordinary Differential Equations

● The actual difference between an initial value 
problem and a boundary value problem is that 
for the former we need to know two (or n, if the 
equation is of n-th degree) initial conditions at 
t = 0, while for the latter we need two (or n) 
boundary conditions which can be at one or 
both boundaries!

● This makes no difference in the mathematical 
solution of the equation, but make indeed a 
big difference in the numerical solution, as 
we will see in next slides.



  

Ordinary Differential Equations

● One has to notice that y(x) is a continuous 
function of the independent variable x, whilst 
computers deal with a discrete subset of the 
real set. Therefore a numerical solution must 
involve some discretization of the continuous 
function y(x), representing the solution of the 
ODE! 

● In order to solve an ODE numerically, one has 
to take the following fundamental steps:



  

Ordinary Differential Equations

1) Limit the independent variable x to a well-
defined, finite, interval. For instance, for a IVP:  
               or, for a BVP:

2) Discretize the given interval (e. g. the second) 
with a finite number N of grid-points xj:

3) Finally, find a method to approximate in a 
discrete form the derivatives of the unknown 
function y(x).  



  

Ordinary Differential Equations

• Concerning the latter, we distinguish several 
methods. We will study just two:

➢ Finite difference methods (FDM);

➢ Spectral methods (SM).

• We start with the first one, and we will study 
the second one later, only in connection with 
some special kind of boundary conditions.



  

Finite Differences schemes

• The idea behind the FDM is to approximate the 
value of a derivative of the unknown function y(x) 
in a generic discrete point xj with a linear 

combination of the y(x) function itself in points near 
to xj:

The coefficients ai are suitably chosen coefficients 
in such a way that the derivative is approximated 
with an error   . p is the precision of the scheme. 



  

Finite Differences schemes

• We notice that:

➢ If j1=j2 we call the scheme symmetric, 
asymmetric in the opposite case;

➢ The precision p depends on j1 and j2: the 

higher they are, the higher is p;

➢ The coefficients ai are determined by using the 

Taylor development of the function y(x) in the 
points near to xj:



  

Finite Differences schemes

● For instance, for the first derivative (n=1), with 
j1=0, j2=1, we have:

where: h = xj+1 – xj.



  

Finite Differences schemes

● By re-arranging the terms:

● If this relation is to be valid, we need that:



  

Finite Differences schemes

● Therefore, we get an asymmetric scheme for 
the first derivative as:

where the error is proportional to h, so that p=1!

● In the same way, we can write a scheme by 
using: j1=-1, j2=0, which yields: 



  

Finite Differences schemes

Where we put: xj-1-xj = -h.
● Again, by re-arranging the formula:

● That is:



  

Finite Differences schemes

● Also in this case, the error is proportional to h, so that 
the precision is: p=1!

● We can improve the precision by considering 
additional points, for instance by using the symmetric 
scheme with: j1=-1, j2=+1.

● In this case we have:



  

Finite Differences schemes

● This formula may be put under the form:

that is:



  

Finite Differences schemes

● The final formula for the first derivative is:

where this time the error is proportional to h2, 
that is this is a second order scheme (p=2)!

● In the same way, it is possible to have higher 
order schemes. For instance:



  

Finite Differences schemes

● With the same technique one can find a 
centered formula for the second derivative 
(n=2, j1=-1, j2=+1):



  

Finite Differences schemes

● This gives the relations:

that gives a second order approximation for the 
second derivative:



  

Initial value problems

● Now that we have an idea about how to 
compute a suitable approximation for a generic 
derivative depending on the values of the 
function in the nearest points, we can afford the 
problem of solving an Initial Value Problem 
(IVP). Later on, we will see how to solve a 
Boundary Value Problem (BVP).

● Let us first consider an IVP, first order ODE:

with the following initial condition: y(t=0)=y0.



  

Initial value problems

● Let us now fix a limited integration interval, for 
instance:

and divide that interval in N equally spaced 
intervals, thus identifying N+1 discrete points in 
time:

● We can now write the equation on a generic 
discrete point in time tn:



  

Initial value problems

● Now we can write an approximation for the 
derivative in tn with a Finite Difference Scheme 
in the form:

where we write: ym instead of y(tm) to lighten the 
notation.



  

Initial value problems

● That is, a one-step scheme is a relation that 
involves only quantities at n and n+1 time steps. 
As obvious, a multi-step scheme involves 
more time steps.

● Some terminology:

➢   is called increment function;

➢ If =(tn,yn,Fn;h) the scheme is said explicit;

➢ If   depends also on tn+1, yn+1, Fn+1 the scheme 
is said implicit.



  

Initial value problems

➢ The quantity n+1(h) is called local truncation 
error (LTE) and represents the error that is 
made in the evaluation of the solution at each 
time step.

➢ The quantity                  is called global 
truncation error (GTE).

➢ If n+1(h) = O(hp) we say that the scheme has 

order p.



  

Initial value problems

● We then get the relation:

that is called numerical scheme.
● If the numerical scheme can be written in the 

form:

we have a one-step scheme; if not, we have a 
multi-step scheme.



  

Initial value problems

● Properties of a numerical scheme:
➢ We call a scheme consistent when, in the limit for 

h tending to zero, the scheme reproduces the 
original equation.

That is:



  

Initial value problems

● Properties of a numerical scheme:
➢ We call a scheme convergent when, in the limit for 

h tending to zero, the numerical solution tends to 
the exact solution.

That is:

➢ We call a scheme stable if n+1(h) remains finite for 

increasing n-s.

That is:



  

Initial value problems

● The latter means that, depending on the value 
of h, the local truncation errors may become 
larger and larger with increasing n.

● Notice that convergence property may be 
hardly satisfied when, that is in all practical 
cases, the solution of the equation is 
unknown!

● This difficulty is partially overcome thanks to 
Lax equivalence theorem, that is the most 
important theorem of FDM.



  

Initial value problems

● Lax equivalence theorem:

A numerical scheme for a linear differential equation is 
convergent if and only if it is consistent and stable.

● The problem is now how to ensure the 
stability of a numerical scheme.

● Von Neumann stability criterion:

Given an ODE in the form:

where L is a linear operator, and given a one-step 
numerical scheme, this is stable if:



  

Initial value problems

● This means that the scheme is stable if one 
can find some value of h such that the Von 
Neumann’s stability criterion is satisfied.

● Notice that:

1)The criterion is a necessary condition, but 
not sufficient. This means that if the 
condition is satisfied, the scheme is stable, 
but there may exist values of h for which the 
conditions is not satisfied but the scheme is 
stable as well!



  

Initial value problems

● Notice that:

2)The stability, as well as the convergence 
depends not only on the scheme but also on 
the equation. That is, a scheme can be stable 
for an equation and unstable for another one.

3)The ODE must be linear, for the Theorem to be 
valid! However, in practical cases, if a scheme 
is stable for the linearized version of the 
equation then it is often stable also for the 
non-linear equation. This is not true all the 
times, unfortunately, but it works many times!



  

Euler’s schemes

● Example:

We can produce a simple numerical scheme by 
approximating the first derivative with a scheme 
in which m=0, k=1:

where: 
● The scheme can be rewritten as:



  

Euler’s schemes

● That is a one-step scheme, provided that:

that means that:

1) The scheme is explicit (  does not depend 
on quantities at tn+1);

2) It is a first order scheme, since p=1;

3) The scheme is consistent, since the two 
conditions are automatically satisfied!



  

Euler’s schemes

● This is the so-called Forward Euler’s scheme.



  

Euler’s schemes

● Let us study briefly the convergence and 
stability properties of the scheme.

● To do this, we have to apply the scheme to some 
equation. As an example to start with, let us 
consider an ODE with constant coefficients.

● In this case, only two types of solutions are 
allowed: exponentially increasing or 
decreasing functions and oscillating 
functions.

● Let us start with the first case (exponential 
solutions).



  

Euler’s schemes

● Let us consider the differential equation:

with initial condition: y(t=0) = y0.

● The analytical solution of this equation is an 
exponential function:

as it is easily shown by substituting the solution 
into the equation.



  

Euler’s schemes

● In fact, given the solution, we have:

that is the original equation. Therefore, the 
solution satisfies identically the equation.

● By using the Forward Euler’s Scheme, after 
discretization of the integration interval [0,Tend], 
we have:



  

Euler’s schemes

● This means the numerical solution is given by:

while the exact solution at the generic t=tn is:



  

Euler’s schemes

● We can now show that the scheme is indeed 
convergent, namely that:

● In fact:

where we used the fact that:



  

Euler’s schemes

● By remembering that:

we finally have:

that is, the scheme is convergent.
● Let us see whether it is stable.



  

Euler’s schemes

● The scheme is:
● The Von Neumann criterion tells us that, in 

order to be stable, h must satisfy the relation:

where we used the fact that, since:

we can pose: 



  

Euler’s schemes

● Therefore, the scheme is stable only if k < 0 
and h < 2/|k|. This means that:

➢ the equation is numerically solvable only if 
the constant k is negative, that is only when 
the solution is exponentially decreasing;

➢ Even for negative k-s, there is a limit on the 
maximum time-step allowed during the 
numerical solution of the ODE, depending on 
the value of k.



  

Euler’s schemes

● It is interesting to notice the following things:

1) Although solutions with k > 0 are of course 
mathematically correct, they are typically 
not physically meaningful, since a physical 
quantity which increases exponentially is not 
existing!

2) Let us suppose that k < 0. The solution of 
the equation is:

where  = 1/|k| is called characteristic time 
of the solution.



  

Euler’s schemes

● The meaning of   is that, after t =   the solution 
has decreased of a factor about 1/3:

with respect it initial value.
● The stability condition coming from the Von 

Neumann’s criterion thus becomes:

that is, the time step must be smaller than, 
except for a given factor, the characteristic 
time of the phenomenon!



  

Euler’s schemes

● Let us try what happens if we use another 
approximation for the first derivative, with m=-1, 
k=0:

where:

● If we multiply by h both sides, rearrange the 
terms and we pass from the step n to n+1: 



  

Euler’s schemes

● That is a one-step scheme, provided that:

that means that:

1) The scheme is implicit (  does depend on 
quantities at tn+1);

2) It is a first order scheme, since p=1;

3) The scheme is consistent, since the two 
conditions are automatically satisfied (when h 
tends to zero,                                         )!



  

Euler’s schemes

● This is the so-called Backward Euler’s 
scheme:



  

Euler’s schemes

● Let us study again the convergence and 
stability of the scheme when applied to the 
equation:

with the initial condition: y(t=0)=y0.

● In this case, the scheme reads:



  

Euler’s schemes

● The numerical solution is then:



  

Euler’s schemes

● To show the convergence of the scheme, we 
have to compute:

where we used the fact that:
● That is, the scheme is convergent!



  

Euler’s schemes

● Let us see whether it is stable.
● For the Von Neumann’s criterion:

that is the scheme is unconditionally stable, 
whatever value of h we choose!



  

Euler’s schemes

● This is a general property of implicit schemes:

implicit schemes are, generally, more stable 
than explicit schemes!

● However, generally, they are also much more 
difficult to implement for non-linear equations!

● For instance, the non-linear equation:

can be solved numerically with the Backward 
Euler scheme as:

Finding yn+1 requires the solution of a non-linear, 
algebraic equation!



  

Runge-Kutta scheme

● We can improve the precision of the numerical 
scheme, by keeping into account that, for 
instance, the FD central scheme:

with an error:
● We can build a one-step scheme by taking an 

intermediate point t*n which is the midpoint 

between tn and tn+1.



  

Runge-Kutta scheme

● This is equivalent to consider:

that is, the scheme becomes:



  

Runge-Kutta scheme

● In order this to be useful we have to find a way 
to compute y*n and t*n. We can use a Forward 

Euler’s scheme over a time-step h/2, to 
compute this:

● That is, the final scheme is:



  

Runge-Kutta scheme

● Finally the scheme can be rewritten as:

which is indeed an explicit, one-step scheme, because:

Before concluding this is a second order scheme, 
however we have to show that               , because the 
first half-step with the Euler scheme may decrease the 
precision!



  

Runge-Kutta scheme

● To show this, we re-write the two equations of 
the scheme by substituting the derivative of y to 
the RHS F(y,t), from the equation:



  

Runge-Kutta scheme

● By comparing this relation with the Taylor’s 
expansion of yn+1 as a function of yn:

we deduce that:

namely the scheme is a second order scheme 
(p=2)!



  

Runge-Kutta scheme

● This is the so-called, second order Runge-
Kutta scheme:



  

Runge-Kutta scheme

● From this, we deduce that the scheme is 
consistent, in fact:

and:

● To analyze the convergence and stability 
properties, we have to apply it to, for instance, 
the usual equation...



  

Runge-Kutta scheme

● By considering the equation:

the second-order Runge-Kutta scheme reads:



  

Runge-Kutta scheme

● Therefore, the scheme can be written as:



  

Runge-Kutta scheme

● The convergence is trivially proven when 
considering that:

which is the same term appearing in the 
Forward Euler scheme, that is convergent, as 
we already showed!

● Concerning the stability, the Von Neumann’s 
criterion gives:



  

Runge-Kutta scheme

● This is equivalent to the system:

● The first equation has a solution:

whilst the opposite case has no solution!



  

Runge-Kutta scheme

● The second inequality corresponds to:

and, posing x=hk, can be re-written as:

which is always satisfied, since the solutions:

are always complex, that is the parabola has no 
interception with the x axis and lies in the upper 
part of the Cartesian plane (y>0).



  

Runge-Kutta scheme

● Finally, the stability criterion gives:

that is identical to the stability condition for the 
Forward Euler’s scheme!

● The lesson we learnt so far:
➢ Explicit schemes have more or less all the same 

stability conditions;

➢ If we want more stability, we should use implicit 
schemes;

➢ Runge-Kutta has however a superior precision, although 
it requires two evaluations of the RHS of the equation!



  

Higher order ODEs

● Till now, we studied the case of a single first 
order equation.

● It is possible to show that any n-degree ODE 
can be cast into the form of a system of n first-
order equations. For instance, an ODE like:

with initial conditions:



  

Higher order ODEs

● It can be put into the form:



  

Higher order ODEs

● Which are a system of n first-order ODE with the 

following n initial conditions:

● Notice that, although this was shown in the special 
case above of a linear equation with non constant 
coefficients, this is valid for any differential 
equation.

● Therefore, the schemes we have just studied can be 
applied to each equation of the system, thus finding 
the solution for all the unknowns y, v1, v2, …, vn-1.



  

Harmonic oscillator

● Second example: an ODE with oscillating 
solutions, the harmonic oscillator.



  

Harmonic oscillator

● Since both k and m are both positive constants, 
we may assume:

and the equation describing the motion of the 
body attached to the spring is:

● This is the so-called harmonic oscillator 
equations, which is a second order, linear, ODE, 
with constant coefficients.



  

Harmonic oscillator

● It is easy to show that any function in the form:

is a solution of such equation. In fact:

● This represents an oscillation with amplitude 
A, frequency   and phase .



  

Harmonic oscillator

● Representation of the solution for the harmonic 
oscillator.



  

Harmonic oscillator

● The values of A and   depend on the initial 
conditions:

● By adding hand by hand the squares of the two 
equations or by dividing them, we get:



  

Harmonic oscillator

● How do we proceed numerically? The original 
equation can be re-written as:

with the initial conditions:

● We can now apply one of the scheme we 
studied, for instance Forward Euler:



  

Harmonic oscillator

● Fixed a total interval [0,Tend] and subdividing into 

intervals of width h:

● This can be written in the form:



  

Harmonic oscillator

● Unfortunately, a simple description like this does 
not work! The reason is that if we study the 
stability of such a scheme, we discover that it is 
unstable for any value we choose for h!

● Before showing this, we need to express the Von 
Neumann’s stability criterion for a system of 
equations:

Given a system of k linear ODEs and a one-step 
scheme applied to each equation of the system, 
the scheme is stable if the spectral radius of the 
matrix:



  

Harmonic oscillator

called Amplification matrix, is lesser than 1!
● The spectral radius is the maximum eigenvalue 

(in module) of the matrix A(h).
● This can be easily applied to the simple system 

for the harmonic oscillator.



  

Harmonic oscillator

● The scheme can be written in matrix form as:

● We have now to find the eigenvalues of A(h):



  

Harmonic oscillator

● The solutions are:

● The modulus of this complex number is:

which can never be lesser than 1, that is the 
scheme is never stable, whatever value of h 
we choose!



  

Harmonic oscillator

● The interesting thing is that we obtain the same 
result, that is a scheme always unstable, even 
if we use two Backward Euler schemes for 
both equations:

that is:



  

Harmonic oscillator

● This can be transformed as:

the amplification matrix reads:

which has always eigenvalues with modulus 
greater than 1.



  

Harmonic oscillator

● The same holds when we treat both equations 
with a second order Runge-Kutta scheme:

that is again always unstable...



  

Harmonic oscillator

● It turns out that the solution of the problem, 
namely a stable scheme, is given by considering 
one equation with the Forward Euler scheme 
and another with Backward Euler. 

● For instance, by using FE for the first equation 
and BE for the second:

● This scheme is said symplectic (from Greek, 
“composed of different parts”).



  

Harmonic oscillator

● The scheme can be re-written as:

● The amplification matrix is:

● The characteristic polynomial is:



  

Harmonic oscillator

● It can be re-written as:

whose solution is:

● We distinguish two cases:

1) Real values for lambda:

2) Complex conjugates root: 



  

Harmonic oscillator

● In the first case we get:

● Both equations bring to the inequality:

which is always satisfied!
● In the second case, we get complex conjugate 

solutions in the form:



  

Harmonic oscillator

● In this case we have to consider the modulus of 
:

that is always satisfied again, because all the 
terms inside the square root cancel out, except 
one, which gives:

● This means that the scheme is unconditionally 
stable. The same holds if we take FE for the 
second equation and BE for the first! 



  

Higher order schemes

● We have seen the second order Runge-Kutta 
scheme, that can be written as:

● It is possible to enhance the precision of the 
scheme by considering further refinements of 
the RHS of the equation.

● A scheme often used is the fourth-order, 
Runge-Kutta scheme: 



  

Higher order schemes

● Let us call: yn(0) = yn, the scheme is:

where, as usual: 



  

Higher order schemes

● The precision of the scheme is not easy to 
verify in the general case, however we can 
show how the scheme can be applied to the 
simple equation:

and we can easily verify in this particular case 
that it is indeed a fourth-order scheme.

● In this case, we have:



  

Higher order schemes



  

Higher order schemes

● Finally, by re-arranging the terms, we have:

● We can notice that the exact solution is given 
by:



  

Higher order schemes

● The Taylor’s development of the function ex 
about x=0, is:

which corresponds to the previous formula for 
x=kh.



  

Higher order schemes

● This shows that the scheme represents a fourth 
order approximation of the exact solution!

● Runge-Kutta scheme can be constructed with, 
in principle, any wanted precision. Of course 
one must keep into account that more precise 
schemes require an equal amount of 
evaluations of the RHS of the equation, that 
implies longer computational times!

● There is a whole “zoology” of numerical 
schemes, often with very little differences 
among them. Just some of them: 



  

Other One-step schemes

● Crank-Nicolson scheme:

this is a second-order, implicit scheme, rather 
stable a in a variety of circumstances.

● Heun’s scheme:

that is a second-order, explicit scheme, a 
slight variant of the Crank-Nicolson scheme.



  

Some multi-step schemes

● Leap-Frog scheme:

this is a second-order, explicit scheme.
● Adams-Bashforth scheme:

that is a second-order, explicit scheme.
● And many more...
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