
  

Systems of linear equations

Given a system of equations with dimension n x n:

it can be written in matrix form as:

where A is the matrix of the coefficients, 
x are the unknowns and b is the 

vector of known terms.



  

● The problem is always analytically solvable if 
the matrix is invertible (namely if            )

● Often, the numerical solution of complex 
problems (e.g., differential equations) can be 
re-formulated as a system of linear algebraic 
equations with very large N!

● Problem: find an algorithm which computes the 
numerical solution with the highest possible 
precision by using the lowest number of 
operations.

Why a numerical solution?



  

● The Cramer’s rule yields the solution:

where               is the determinant of the matrix 
obtained by substituting the column-vector b to 
the i-th column of A.

● How complex is this algorithm? We keep into 
account only multiplications and divisions, by 
neglecting additions!

Solution through the Cramer’s rule!



  

● The determinant of a nxn matrix can be defined 
as:

where Sn is the set of all permutations of the 
first n integer numbers, σ is a generic 
permutation of such elements, σ i( ) is the i-th 
figure of this permutation and sign(σ) indicates 
the sign of the permutation (+1 for even 
permutations, -1 for odd).

Solution through the Cramer’s rule!



  

● Example for n=3:

Sn has n! elements = 6

even permutations: 123, 231, 312;

odd permutations: 213, 132, 321;

Solution through the Cramer’s rule!



  

● Therefore, each n x n determinant requires:

n! times n+1 products = (n+1) x n!

We have to compute n unknowns xi, that is:

➢ n determinants for the numerator
➢ 1 determinant (equal for all i) for the 

denominator

for a total of n+1 determinants, namely:

(n+1)2 x n! operations.

 This is a huge number for large n!!!

Solution through the Cramer’s rule!



  

● A triangular system is such that:

                                 lower triangular

                                 upper triangular
● For instance:

Triangular systems



  

● The solution of LT system is trivial (if           ) 
with the forward substitutions algorithm:

● For the second system we can use the 
backward substitutions algorithm (if           ):

Forward and Backward substitutions



  

● The two algorithms can be easily generalized to 
the n x n case: 

Generic triangular systems



  

● For the FS:

● For the BS:

Generic triangular systems



  

● For the FS:
– Computation of x1 requires 1 product;

– Computation of x2 requires 2 products;

– …

– Computation of xi requires i products;

● The total complexity is:

● Proof:

Complexity of FS and BS



  

● The case of triangular matrices is a very special 
one, however a generic matrix can be reduced 
into a triangular form thanks to some 
algorithms.

● One of those is the so-called “Gaussian 
elimination”.

● It is based on the idea of reducing the matrix to 
a triangular form through linear combinations of 
rows or columns.

Gaussian elimination



  

● Example with a 3x3 matrix:

● Starting from the second row, one subtracts the 
element ij of the i-th row the quantity:

Gaussian elimination



  

● Then we repeat the operation starting from the 
second row:

● That is, we get to a triangular matrix:

which can be solved with the FS algorithm...

Gaussian elimination



  

● How many operations are needed for a n x n 
matrix?

● To eliminate the first column we need to 
compute the ratio: a1j/a11 for j=2,…,n AND the 
ratio: b1/a11, for a total of n products…

● Then, for each row i=2,…,n (n-1 rows in total!) 
we need to multiply these n products times ai1!

●  Therefore, to cancel the first column we need:

Complexity of GE



  

● To eliminate the second column we then need:

(n-1)2 operations…
● To put the original matrix in a triangular form the 

needed number of operations is:

● To finally solve the system, we need to add the 

                         

operations needed for the BS on the reduced matrix!

Complexity of GE



  

● An alternative method, which however has 
some advantages over the GE is the so-called 
“LU-factorization”.

● Given the original system of linear equations:

it is possible to show that, if A is invertible, then 
it is possible to write A as the product of two 
matrices L (lower triangular) and U (upper 
triangular), namely:

LU factorization



  

● How to find the decomposition: A=LU?

LU factorization



  

● First, notice that on the LHS we have n x n 
numbers, on the RHS we have n x n + n.

● That is, there are n of such values which can be 
chosen at will!  The decomposition is 
not unique!!!

● In order to decrease the total number of 
operations, we can choose two slightly different 
algorithms:
➢ Doolittle’s algorithm: lii=1;

➢ Crout’s algorithm: uii=1.

LU factorization



  

● When we put this product into the original 
system, we get:

and then, if we define: y=Ux, we finally get the 
system, equivalent to the original one:

LU factorization



  

● Let’s see the second (Crout’s algorithm, uii=1)!

LU factorization



  

● Let’s do the products of L and U:
● first row:

from which we get:

● second row

LU factorization



  

from which we can compute l21 and u2j:

● Third row:

LU factorization



  

from which we get the relations:

● By going on writing the relations for the 
following lines...

LU factorization



  

… we finally get the final relations for lij and uij:

● for i = 1:

for i = 2, …, n:

LU factorization



  

● How many operations are required to find the 
coefficients of L and U?

the computation of u1j requires n-1 products!

● For each i:

for the lij, j=2, …, i for the uij, j=i+1, …, n

Complexity of LU factorization



  

● Therefore, for each i (=2, …,n-1) , the 
computation of lij and uij requires:

● this number has to be multiplied for the number 
of values of i and then added up to the number 
of operations for the first row of uij, n-1, that is:

Complexity of LU factorization



  

● Hence, the LU factorization has the same 
complexity as the Gaussian elimination (indeed 
one could show that the GE is a special case of 
LU factorization!)…

… however …

there are cases in which the LU factorization can 
be MUCH more convenient than the GE!

● For instance, a typical case is when one has to 
solve a set of different linear systems with the 
same matrix of the coefficients A and different 
RHSs bi.

Advantages of LU factorization



  

● In this case:

● The advantage of the LU factorization over the 
GE is in the fact that in GE both the matrix A 
and the vectors of known terms MUST be 
transformed! In LU, ONLY the computation of lij 
and uij is to be carried out the first time, after 
that only the FS and BS have to be computed 
to find the solution! 

Advantages of LU factorization



  

● More specifically, for EG we have:

operations
● For the LU factorization:

operations, which is much better (for instance, 
when n=m)!

Advantages of LU factorization



  

● A typical example is when one is to invert a nxn 
matrix: A A-1=I

where a’ij are the coefficients of A-1.

Advantages of LU factorization



  

● One can re-write this as n different systems of 
nxn equations in the form:

where: 

Advantages of LU factorization



  

● How does the truncation errors propagate 
during the resolution of the system?

● One could show that, a sufficient condition to 
avoid instabilities is that the matrix is 
diagonally dominant:

that is, the coefficients along the diagonal of the 
matrix A must be greater (in absolute value) 
than the out-of-diagonal coefficients.

Stability of LU factorization



  

● We have seen as the methods we have studied 
till now require ~ O(n3) operations to solve the 
system when the coefficients of the system are 
all different from zero.

● However, many times in numerical analysis, it 
happens that the matrix A of the system to 
solve has many zeros in determined positions.

● In such cases, we talk of “sparse matrices”, in 
the sense that a non-zero coefficient may 
appear only in some particular positions of the 
matrix A.

Sparse matrices



  

● Some examples:

Sparse matrices



  

Sparse matrices



  

Sparse matrices

We have already seen the case of triangular matrices, 
we will see the case of band matrices and, finally, the 
general case. We will not deal with the other cases 
(Hessenberg matrices, block matrices, ecc.)



  

● A case that often appears in numerical analysis 
is the case in which the matrix of the 
coefficients of the system has the form of a 
“band matrix” with lower-bandwidth p and 
upper-bandwidth q, that is:

● The quantity M=p+q is called the bandwitdh of 
the band matrix. 

Band matrices



  

● Example (n=8):

● Here: p = 2, q = 3, M = p+q = 5.

Band matrices



  

● The idea is to solve the system by avoiding the 
multiplications for 0.

● This is done by using a LU decomposition in 
which L has only p lower co-diagonals different 
from zero and U has only q upper co-diagonal 
different from zero.

● The number of operations needed to solve a 
band system is:
➢ O[(p+q)n2] for the LU decomposition;

➢ O(pn)+O(qn) for the FS and BS.

Band matrices



  

● A specially important case is the one with: 
p=q=1, the so-called tridiagonal case.

● In this case, the matrix reads:

Tridiagonal matrices



  

● which can be factorized (e.g. with the Doolittle 
algorithm) as:

Tridiagonal matrices



  

● By multiplying the , , and   coefficients as 
before, one obtains:

therefore the solution of the LU system:

Tridiagonal matrices



  

● can be found as:

that is called “Thomas’ algorithm” and 
requires:

Tridiagonal matrices



  

● Let us suppose now we have a generic linear 
system of equations:

and let us suppose the matrix A is sparse, 
namely it has many elements equal to zero and 
some elements different from zero in generic, 
but known, positions i-j.

● Our aim is always to find x that satisfies the 
relation (1)!

Sparse matrices



  

● A note on solving generic polynomial equations:
➢ When we have an equation in the form:

➢ We can rewrite the equation as:

➢ For n > 4 we do not know how to solve the equation 
with algebraic methods, however we can try to find 
an approximate solution!

Sparse matrices



  

● The trick is to suppose that we know an 
approximated value of the solution x0 which 
does not satisfy the (2), but we can get an 
“improved” solution (closer to the real one) by 
iterating the formula:

● For instance, let us consider n=2 (second 
degree equation):

Sparse matrices



  

● Suppose that we know an approximated value 
x0 of the solution, that is:

because x0 is NOT the real solution.

● We can get a better approximation x1 of the 
solution as:                      where we suppose:

● By substituting x1 in the original equation:

Sparse matrices



  

● Then, we can iterate the procedure, getting:

● For example, the equation:

has solutions: x=-1 and x=-3.

● If we suppose, for instance, x0=0, we get the 
succession of approximated solutions:

Sparse matrices



  

● Going back to the case of sparse matrices, we 
can try to use an analogous method to solve a 
system of linear equations.

● Methods of this kind, in which one searches for 
a succession of solutions x(k) is called a 
Relaxation Method, in the sense that the 
solution converges (relaxes) towards the real 
solution of the system.

Sparse matrices



  

● Let us suppose that the matrix of coefficients A 
of the original system:

can be split in a diagonal part D and an off-
diagonal part R:

where:

Jacobi relaxation method



  

● We have the following relation:

therefore one can write a succession of 
approximations for the solution x in the form:

that is:

which always converges to the solution, provided 
that D is invertible (i.e. all aii are not zero!).

Jacobi relaxation method



  

● This relation can be written for the generic i-th 
component of the solution vector x:

● This formula can be more convenient than the 
usual LU factorization if:

1) x0 is close enough to the real solution so that the 
convergence is reached in few steps;

2) There are only few terms 

Jacobi relaxation method



  

● Generally one stops the iteration loop when the 
difference between two successive 
approximations of the solution is smaller than a 
given tolerance p, in some norm (e.g.:

                       )

● Example: 

Jacobi relaxation method



  

● The exact solution of the system is:

● Let us suppose that the initial guess for the 
solution is:

● For the Jacobi’s method we obtain the 
sequence of values:

Jacobi relaxation method



  

Jacobi relaxation method



  

● Notice that:
➢ We found the exact solution after just 2 steps: this 

does not happen usually (only in very simple cases 
like the one we are considering!), because the 
solution is usually approximated and several 
steps are required to get the solution with the 
necessary precision;

➢ We kept into account in the products only the 
terms which are actually different from zero, 
therefore we need to know their position on each 
row of the matrix!

Jacobi relaxation method



  

● Another very common method is the Gauss-
Seidel method which consists in splitting the 
original A matrix of the system in a diagonal, 
plus a lower and a upper triangular matrices:

Gauss-Seidel relaxation method



  

● Then we put the U term on the RHS:

● We know how to solve the LHS of thus system 
(for instance with the forward substitutions!), 
then we find the solution as the succession of 
approximations:

that is:

Gauss-Seidel relaxation method



  

● Written in terms of the elements of the vector of 
solutions:

● For instance, we can apply to the previous 
system:

Gauss-Seidel relaxation method



  

Gauss-Seidel relaxation method

● Some notes:
➢ Usually a smaller number of iterations is 
required (just 1 in this simple case!)

➢ However, the iterations cannot be performed in 
parallel, which limits the application of the 
method to parallel computing!



  

Appendix

● Here we show that:



  

Appendix

● By adding up vertically all the terms on the RHS 
of the last relation:



  

Appendix

● The first terms in parentheses add up n times, 
and the second terms can be grouped as:

● If we remember that

we find:



  

Appendix

● The second term can be written as:

therefore we have:



  

Appendix

● Finally, by bringing the term in  on the RHS to 
the LHS, we find:
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