

Systems of linear equations

Given a system of equations with dimension n x n:

it can be written in matrix form as:

where A is the matrix of the coefficients,
x are the unknowns and b is the

vector of known terms.

● The problem is always analytically solvable if
the matrix is invertible (namely if)

● Often, the numerical solution of complex
problems (e.g., differential equations) can be
re-formulated as a system of linear algebraic
equations with very large N!

● Problem: find an algorithm which computes the
numerical solution with the highest possible
precision by using the lowest number of
operations.

Why a numerical solution?

● The Cramer’s rule yields the solution:

where is the determinant of the matrix
obtained by substituting the column-vector b to
the i-th column of A.

● How complex is this algorithm? We keep into
account only multiplications and divisions, by
neglecting additions!

Solution through the Cramer’s rule!

● The determinant of a nxn matrix can be defined
as:

where Sn is the set of all permutations of the
first n integer numbers, σ is a generic
permutation of such elements, σ i() is the i-th
figure of this permutation and sign(σ) indicates
the sign of the permutation (+1 for even
permutations, -1 for odd).

Solution through the Cramer’s rule!

● Example for n=3:

Sn has n! elements = 6

even permutations: 123, 231, 312;

odd permutations: 213, 132, 321;

Solution through the Cramer’s rule!

● Therefore, each n x n determinant requires:

n! times n+1 products = (n+1) x n!

We have to compute n unknowns xi, that is:

➢ n determinants for the numerator
➢ 1 determinant (equal for all i) for the

denominator

for a total of n+1 determinants, namely:

(n+1)2 x n! operations.

 This is a huge number for large n!!!

Solution through the Cramer’s rule!

● A triangular system is such that:

 lower triangular

 upper triangular
● For instance:

Triangular systems

● The solution of LT system is trivial (if)
with the forward substitutions algorithm:

● For the second system we can use the
backward substitutions algorithm (if):

Forward and Backward substitutions

● The two algorithms can be easily generalized to
the n x n case:

Generic triangular systems

● For the FS:

● For the BS:

Generic triangular systems

● For the FS:
– Computation of x1 requires 1 product;

– Computation of x2 requires 2 products;

– …

– Computation of xi requires i products;

● The total complexity is:

● Proof:

Complexity of FS and BS

● The case of triangular matrices is a very special
one, however a generic matrix can be reduced
into a triangular form thanks to some
algorithms.

● One of those is the so-called “Gaussian
elimination”.

● It is based on the idea of reducing the matrix to
a triangular form through linear combinations of
rows or columns.

Gaussian elimination

● Example with a 3x3 matrix:

● Starting from the second row, one subtracts the
element ij of the i-th row the quantity:

Gaussian elimination

● Then we repeat the operation starting from the
second row:

● That is, we get to a triangular matrix:

which can be solved with the FS algorithm...

Gaussian elimination

● How many operations are needed for a n x n
matrix?

● To eliminate the first column we need to
compute the ratio: a1j/a11 for j=2,…,n AND the
ratio: b1/a11, for a total of n products…

● Then, for each row i=2,…,n (n-1 rows in total!)
we need to multiply these n products times ai1!

● Therefore, to cancel the first column we need:

Complexity of GE

● To eliminate the second column we then need:

(n-1)2 operations…
● To put the original matrix in a triangular form the

needed number of operations is:

● To finally solve the system, we need to add the

operations needed for the BS on the reduced matrix!

Complexity of GE

● An alternative method, which however has
some advantages over the GE is the so-called
“LU-factorization”.

● Given the original system of linear equations:

it is possible to show that, if A is invertible, then
it is possible to write A as the product of two
matrices L (lower triangular) and U (upper
triangular), namely:

LU factorization

● How to find the decomposition: A=LU?

LU factorization

● First, notice that on the LHS we have n x n
numbers, on the RHS we have n x n + n.

● That is, there are n of such values which can be
chosen at will! The decomposition is
not unique!!!

● In order to decrease the total number of
operations, we can choose two slightly different
algorithms:
➢ Doolittle’s algorithm: lii=1;

➢ Crout’s algorithm: uii=1.

LU factorization

● When we put this product into the original
system, we get:

and then, if we define: y=Ux, we finally get the
system, equivalent to the original one:

LU factorization

● Let’s see the second (Crout’s algorithm, uii=1)!

LU factorization

● Let’s do the products of L and U:
● first row:

from which we get:

● second row

LU factorization

from which we can compute l21 and u2j:

● Third row:

LU factorization

from which we get the relations:

● By going on writing the relations for the
following lines...

LU factorization

… we finally get the final relations for lij and uij:

● for i = 1:

for i = 2, …, n:

LU factorization

● How many operations are required to find the
coefficients of L and U?

the computation of u1j requires n-1 products!

● For each i:

for the lij, j=2, …, i for the uij, j=i+1, …, n

Complexity of LU factorization

● Therefore, for each i (=2, …,n-1) , the
computation of lij and uij requires:

● this number has to be multiplied for the number
of values of i and then added up to the number
of operations for the first row of uij, n-1, that is:

Complexity of LU factorization

● Hence, the LU factorization has the same
complexity as the Gaussian elimination (indeed
one could show that the GE is a special case of
LU factorization!)…

… however …

there are cases in which the LU factorization can
be MUCH more convenient than the GE!

● For instance, a typical case is when one has to
solve a set of different linear systems with the
same matrix of the coefficients A and different
RHSs bi.

Advantages of LU factorization

● In this case:

● The advantage of the LU factorization over the
GE is in the fact that in GE both the matrix A
and the vectors of known terms MUST be
transformed! In LU, ONLY the computation of lij
and uij is to be carried out the first time, after
that only the FS and BS have to be computed
to find the solution!

Advantages of LU factorization

● More specifically, for EG we have:

operations
● For the LU factorization:

operations, which is much better (for instance,
when n=m)!

Advantages of LU factorization

● A typical example is when one is to invert a nxn
matrix: A A-1=I

where a’ij are the coefficients of A-1.

Advantages of LU factorization

● One can re-write this as n different systems of
nxn equations in the form:

where:

Advantages of LU factorization

● How does the truncation errors propagate
during the resolution of the system?

● One could show that, a sufficient condition to
avoid instabilities is that the matrix is
diagonally dominant:

that is, the coefficients along the diagonal of the
matrix A must be greater (in absolute value)
than the out-of-diagonal coefficients.

Stability of LU factorization

● We have seen as the methods we have studied
till now require ~ O(n3) operations to solve the
system when the coefficients of the system are
all different from zero.

● However, many times in numerical analysis, it
happens that the matrix A of the system to
solve has many zeros in determined positions.

● In such cases, we talk of “sparse matrices”, in
the sense that a non-zero coefficient may
appear only in some particular positions of the
matrix A.

Sparse matrices

● Some examples:

Sparse matrices

Sparse matrices

Sparse matrices

We have already seen the case of triangular matrices,
we will see the case of band matrices and, finally, the
general case. We will not deal with the other cases
(Hessenberg matrices, block matrices, ecc.)

● A case that often appears in numerical analysis
is the case in which the matrix of the
coefficients of the system has the form of a
“band matrix” with lower-bandwidth p and
upper-bandwidth q, that is:

● The quantity M=p+q is called the bandwitdh of
the band matrix.

Band matrices

● Example (n=8):

● Here: p = 2, q = 3, M = p+q = 5.

Band matrices

● The idea is to solve the system by avoiding the
multiplications for 0.

● This is done by using a LU decomposition in
which L has only p lower co-diagonals different
from zero and U has only q upper co-diagonal
different from zero.

● The number of operations needed to solve a
band system is:
➢ O[(p+q)n2] for the LU decomposition;

➢ O(pn)+O(qn) for the FS and BS.

Band matrices

● A specially important case is the one with:
p=q=1, the so-called tridiagonal case.

● In this case, the matrix reads:

Tridiagonal matrices

● which can be factorized (e.g. with the Doolittle
algorithm) as:

Tridiagonal matrices

● By multiplying the , , and  coefficients as
before, one obtains:

therefore the solution of the LU system:

Tridiagonal matrices

● can be found as:

that is called “Thomas’ algorithm” and
requires:

Tridiagonal matrices

● Let us suppose now we have a generic linear
system of equations:

and let us suppose the matrix A is sparse,
namely it has many elements equal to zero and
some elements different from zero in generic,
but known, positions i-j.

● Our aim is always to find x that satisfies the
relation (1)!

Sparse matrices

● A note on solving generic polynomial equations:
➢ When we have an equation in the form:

➢ We can rewrite the equation as:

➢ For n > 4 we do not know how to solve the equation
with algebraic methods, however we can try to find
an approximate solution!

Sparse matrices

● The trick is to suppose that we know an
approximated value of the solution x0 which
does not satisfy the (2), but we can get an
“improved” solution (closer to the real one) by
iterating the formula:

● For instance, let us consider n=2 (second
degree equation):

Sparse matrices

● Suppose that we know an approximated value
x0 of the solution, that is:

because x0 is NOT the real solution.

● We can get a better approximation x1 of the
solution as: where we suppose:

● By substituting x1 in the original equation:

Sparse matrices

● Then, we can iterate the procedure, getting:

● For example, the equation:

has solutions: x=-1 and x=-3.

● If we suppose, for instance, x0=0, we get the
succession of approximated solutions:

Sparse matrices

● Going back to the case of sparse matrices, we
can try to use an analogous method to solve a
system of linear equations.

● Methods of this kind, in which one searches for
a succession of solutions x(k) is called a
Relaxation Method, in the sense that the
solution converges (relaxes) towards the real
solution of the system.

Sparse matrices

● Let us suppose that the matrix of coefficients A
of the original system:

can be split in a diagonal part D and an off-
diagonal part R:

where:

Jacobi relaxation method

● We have the following relation:

therefore one can write a succession of
approximations for the solution x in the form:

that is:

which always converges to the solution, provided
that D is invertible (i.e. all aii are not zero!).

Jacobi relaxation method

● This relation can be written for the generic i-th
component of the solution vector x:

● This formula can be more convenient than the
usual LU factorization if:

1) x0 is close enough to the real solution so that the
convergence is reached in few steps;

2) There are only few terms

Jacobi relaxation method

● Generally one stops the iteration loop when the
difference between two successive
approximations of the solution is smaller than a
given tolerance p, in some norm (e.g.:

)

● Example:

Jacobi relaxation method

● The exact solution of the system is:

● Let us suppose that the initial guess for the
solution is:

● For the Jacobi’s method we obtain the
sequence of values:

Jacobi relaxation method

Jacobi relaxation method

● Notice that:
➢ We found the exact solution after just 2 steps: this

does not happen usually (only in very simple cases
like the one we are considering!), because the
solution is usually approximated and several
steps are required to get the solution with the
necessary precision;

➢ We kept into account in the products only the
terms which are actually different from zero,
therefore we need to know their position on each
row of the matrix!

Jacobi relaxation method

● Another very common method is the Gauss-
Seidel method which consists in splitting the
original A matrix of the system in a diagonal,
plus a lower and a upper triangular matrices:

Gauss-Seidel relaxation method

● Then we put the U term on the RHS:

● We know how to solve the LHS of thus system
(for instance with the forward substitutions!),
then we find the solution as the succession of
approximations:

that is:

Gauss-Seidel relaxation method

● Written in terms of the elements of the vector of
solutions:

● For instance, we can apply to the previous
system:

Gauss-Seidel relaxation method

Gauss-Seidel relaxation method

● Some notes:
➢ Usually a smaller number of iterations is
required (just 1 in this simple case!)

➢ However, the iterations cannot be performed in
parallel, which limits the application of the
method to parallel computing!

Appendix

● Here we show that:

Appendix

● By adding up vertically all the terms on the RHS
of the last relation:

Appendix

● The first terms in parentheses add up n times,
and the second terms can be grouped as:

● If we remember that

we find:

Appendix

● The second term can be written as:

therefore we have:

Appendix

● Finally, by bringing the term in  on the RHS to
the LHS, we find:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

