
  

Periodic motions

● Periodic motions are known since the beginning 
of mankind:
– Motion of planets around the Sun;

– Pendulum;

– And many more...



  

Periodic motions

● There are several quantities which describe a 
periodic (or oscillatory) motion (in time!):

➢ Amplitude A
➢ Period T
➢ Frequency 

=
➢ Phase 



  

Periodic motions

● One may define analogous parameters for a 
spatial oscillation:

➢ Amplitude A 

➢ Wavelength 
➢ Wave vector k

=
➢ Phase 



  

Periodic motions

● Finally, there are oscillations both in space and 
time, namely waves:

➢ Wavelength 
➢ Period T
➢ Wave vector k = 

➢ Frequency = 2/T
➢ Phase speed: 

v= /T = /k



  

Periodic motions

● The frequency  determines the number of 
oscillations in the given period T.



  

Examples of periodic motions

Sound:



  

Examples of periodic motions

Light:



  

Superposition of periodic motions

● The important point in all those examples is that 
it is impossible to find in nature a pure 
frequency or wavelenght.

● Natural signals will always be a superposition 
of different frequencies (or wave vectors).

● Therefore it is natural to try to understand 
whether it is possible to separate the different 
frequencies (or wave vectors) in a given 
signal, just like a prism does with the different 
frequencies of the white light!



  

Superposition of periodic motions

● This has very important applications in both 
science and technology:

➢ Non-linear physics, astrophysics, data analysis, 
optical fibers, material spectroscopy, etc.;

➢ Tv and radio broadcasting, transmission of 
signals, music industry, compression of signals, 
and many more…

This is where the Fourier 
analysis comes into play!



  

Fourier analysis

● Let us suppose to have a periodic function of 
time f(t) (but the same holds a function of the 
position x!), representing a signal that is a 
superposition of several frequencies and that 
has the property to be square integrable.

● Fourier’s series:

Given a square integrable function f(t), periodic 
over a period T, it can be always written as:



  

Fourier analysis

● That is, a periodic function f(t) is always made 
of a constant part a0, plus a superposition of 

frequencies multiple (for an integer factor n) 
of the fundamental frequency:

● The components corresponding to the n-th 
multiple of the fundamental frequency is called 
the n-th harmonic of the series.



  

Fourier analysis

● Example: f(t) and zero-th harmonic:



  

Fourier analysis

● Example: f(t) and 0+1 harmonics:



  

Fourier analysis

● Example: f(t) and 0+1+2 harmonics:



  

Fourier analysis

● Example: f(t) and 0+1+2+4 harmonics:



  

Fourier analysis

● Problem: given f(t), how does one determine 
the coefficients an, bn that appear in the 
series?

● Instead of having to deal with real numbers, it 
is often more convenient to use the so-called 
complex representation for the Fourier’s 
series.

● Euler’s relations:



  

Fourier analysis

● They allow us to write:

from which, we obtain:

● If we define the quantities:



  

Fourier analysis

● By noticing that:

we can write the Fourier’s series in a more compact 
form:

that is we have re-written the function f(t) as a 
superposition of complex oscillating functions, with 
complex coefficients cn, where the integer multiple n 
of the fundamental frequency takes values both 
positive and negative (that is, we admit the 
possibility of having both positive and negative 
frequencies).



  

Fourier analysis

● Notice however that, although the cn are 
complex, they must satisfy the condition:

such that the function f(t) is real!

● This means that the negative coefficients of the 
complex Fourier’s development are the complex 
conjugates of the corresponding positive ones. 
This is called reality condition.

● Moreover, we can just easily notice that c0 must 
be real!



  

Fourier analysis

● We have seen so far that the real coefficients an 

and bn, or their complex combinations cn, represent 

the contribution of the n-th harmonic n to the 
signal!

● How do we compute such a contribution?
● Let us start again from the development:

multiply both sides for            and integrate between 
0 and T.



  

Fourier analysis

● We then get:

● Now, we can notice that:



  

Fourier analysis

where we used the substitution:

and the fact that:

if k=n-m is an integer!

● Instead, for n=m, we get: 



  

Fourier analysis

● From that, we infer:

● By substituting in the original formula:



  

Fourier analysis

● That is, the Fourier’s coefficient cn can be 

calculated by multiplying f(t) for the factor e-imt, 
integrating on the periodicity interval [0,T], then 
dividing by T :

● In this way, we can compute the cn by 
calculating an ensemble of infinite integrals. We 
can notice that:



  

Parceval’s theorem

● Sometimes, instead of computing the Fourier’s 
coefficients cn, it is more meaningful to compute 

the contribution that the n-th harmonic gives to 
the total energy of the signal! We mean with 
that the quantity:

● Parceval’s theorem states that:



  

Parceval’s theorem

● Proof:

by substituting to f(t) its Fourier’s development:



  

Parceval’s theorem

● By remembering that:

we get the result:

● We can now split the sum in three parts, one 
relative to negative n, another for n=0, the last 
for positive n.



  

Parceval’s theorem

● And, if we remember that c-n=c*n, that is:

we finally get:

as it was to demonstrate.



  

Parceval’s theorem

● This means that the n-th harmonics n 
contributes to the total energy of the signal with 
a term equal to: 2T|cn|2 for any n different from 

0, and with a term equal to: Tc02, for n=0!

● We define the function:

called energy spectrum of the signal, so that:



  

Pulse signal

● As an example, let us consider a rectangular 
pulse:



  

Pulse signal

● We have, for the Fourier’s coefficients cn:

because:



  

Pulse signal

● By operating the substitution:

we find:

● By remembering Euler’s relations:



  

Pulse signal

● We find:

for k = 0, 1, 2, 3,… and:



  

Pulse signal

● Then, by subtracting the two formulas term by 
term:

for         , while, for          , we have:



  

Pulse signal

● That is, the energy spectrum is given by:

which corresponds to a power-law spectrum 
in n-2!

● We may now reconstruct the function by 
visualizing the contribution of the first N 
harmonics...



  

Pulse signal



  

Pulse signal



  

Pulse signal



  

Pulse signal

And so on...



  

Discrete Fourier transforms (DFT)

● All we said till now is valid for a function known 
in a given periodicity subinterval of the real 
set.

● However, when we want to analyze “real” data 
(coming from a measuring instrument), we have 
to deal with some “sampled” data, that is, the 
signal is sampled at some “discrete” times:

 tj = jt, with j = 0, …, N  and t = T/N.



  

Discrete Fourier transforms (DFT)

● Sampling theorem (or Nyquist-Shannon’s 
theorem):

Given the Fourier development of a given periodic 
function f(tj), sampled on N discrete points, as:

not all of the values n are independent, but only 
the ones in the interval:

where Nmax = N/2. Nmax is said “Nyquist number” 
and the corresponding frequency:

                                    “Nyquist frequency”. 



  

Discrete Fourier transforms (DFT)

● What is the meaning of the theorem?

If I have a discrete signal that contains a 
frequency equal to, for instance:

where m is a given integer number, when I 
sample the signal on N equally spaced points 
the frequency n is indistinguishable from a 
frequency:

● Then, any positive frequency greater than Nmax 
is mapped into a negative frequency.



  

Discrete Fourier transforms (DFT)

● In fact:

and, by recalling that:

we have:



  

Discrete Fourier transforms (DFT)

● This means, in fact, that, when sampling on a 
discrete number of points, oscillations 
corresponding to a multiple: n=Nmax+ m of the 
fundamental frequency , pass through the same 
points as oscillations corresponding to a multiple: 
n’=-Nmax+ m of the fundamental frequency.

● In the following example, N=32, m=12, which gives: 
n=Nmax+m=28, which passes through the same 
points (marked with blue triangles in the plot) as 
n’=-Nmax+m=-4 (marked with yellow big dots in the 
plot).



  

Discrete Fourier transforms (DFT)



  

Discrete Fourier transforms (DFT)

● The same problem exists when you try to sample a 
(negative) frequency n=-(Nmax+m) which is 

mapped into a (positive) frequency: n’=(Nmax-m)

● This problem is known under the name “aliasing” 
and it is a consequence of the fact that the signal is 
sampled.

● For instance, to master a CD the audio signal is 
sampled with a sampling rate of 44.1 kHz, because 
the human hearing range is (roughly) between 20-
20 kHz (however, aliasing problems can persist for 
a trained ear, like the one of a musician!).



  

Discrete Fourier transforms (DFT)

● Therefore, in the discrete Fourier’s series of a 
function f(tj), sampled on N points, it makes 
sense to consider only the frequencies 
between the negative and positive Nyquist 
frequencies, that is the values of n in the 
interval [-N/2,+N/2]:



  

Discrete Fourier transforms (DFT)

● Analogously, for the Parceval’s theorem, we 
have:

● Therefore, now the problem is to finally find a 
method to compute the coefficients cn for a 

function f(t), periodic on an interval T, sampled 
on N points tj = jT/N.



  

Discrete Fourier transforms (DFT)

● According to what we found, computing the cn is 
equivalent to compute the integrals:

where f(t) is sampled on the discrete points tj.

● This can be easily made by using the methods 
we have studied for solving integrals of 
functions known on equally spaced intervals h, 
for instance the trapezoidal rule!



  

Discrete Fourier transforms (DFT)

● For instance, we can write:

where:

are real, periodic, functions of t, known on the 
sampling points tj.



  

Discrete Fourier transforms (DFT)

● According to the trapezoidal rule, their integrals 
can be approximated as:

● Since both Fn and Gn are periodic functions, this 

means that: Fn(t0)=Fn(tN) and Gn(t0)=Gn(tN).



  

Discrete Fourier transforms (DFT)

● Hence, we find the approximation of the 
coefficients cn as:

that is, by remembering the definition of Fn and 

Gn and the fact that T=Nt, we have:



  

Discrete Fourier transforms (DFT)

● We have know two basic questions to answer:

1) What is the error introduced by the trapezoidal 
rule?

2) How many operations are required in order to 
compute the DFT of the function f(t), sampled 
on N grid-points?

• Both questions are easy to answer!

• Error of the trapezoidal rule:



  

Discrete Fourier transforms (DFT)

● It is easy to show that, since f(t) is a periodic function, 
the averages of all its derivatives, starting from the 
first, are exactly zero!

● This is because f(t) can be expanded as a Fourier 
series, namely the sum of infinite terms of the kind: 
cos(nt) and sin(nt), whose derivatives are always  

functions of the same kind.

● But the averages of cos(nt) and sin(nt) are identically 

zero, when computed on a period [0,T]!
● Therefore all error terms are zero and the trapezoidal 

rule give the exact coefficients cn!



  

Discrete Fourier transforms (DFT)

● Concerning the number of operations required 
to compute the cn-s, they are easily estimated:

1) For the reality condition: c-n=cn*, and the 
Nyquist-Shannon theorem, we need to compute 
only the cn for n=0,…,N/2.

2) The total number of coefficients (real and 
imaginary part) is made of 2x(N/2+1) numbers.

3) We need to remember that actually c0 is real, 
so its imaginary part need not to be computed!



  

Discrete Fourier transforms (DFT)

4) It can be easily shown that the coefficient cN/2 is 
purely real, in turn:



  

Discrete Fourier transforms (DFT)

5) The total number of coefficients to compute is 
therefore: 2x(N/2+1)-2 = N.

6) For each coefficient we have to compute the 
product f(tj)cos(ntj) (for the real parts) or 

f(tj)sin(ntj) (for the imaginary parts), for 

j=0,…,N-1, that is N products.

Hence, the total number of operations is N2!



  

Fast Fourier Transform (FFT)

• Is it possible to decrease the number of 
operations?

• The anwer is positive, due to an algorithm 
called FFT (Fast Fourier Transform) proposed 
by J.W. Cooley and J.W. Tukey [Math. Comp., 
19, 1965].

• Although the algorithm was officially proposed 
in 1965, it is based on a lemma due to 
Danielson and Lanczos (1942) and FFT-like 
methods date back even to Gauss (1805)!!!



  

Fast Fourier Transform (FFT)

● Let’s restart from the DFT:



  

Fast Fourier Transform (FFT)

Where we pose:

● We may now observe that n = 0, …, N/2 and, for 
each value of n we have to compute N complex 
multiplications of the real values f(tj) by the 

complex values WN
nj, for a total of (N/2 + 1)x(2N) 

= N2 + 2N multiplications.

● The Danielson and Lanczos lemma states that 
the single transform on N points, namely the 
computation of the cn can be re-written as two 
separated transforms on N/2 points!



  

Fast Fourier Transform (FFT)

● In fact:



  

Fast Fourier Transform (FFT)

● We now notice that:

and, therefore:

that is, we have re-written the transform on N 

points as a combination, with coefficients WNn 

of 2 transforms on N/2 points!



  

Fast Fourier Transform (FFT)

● The main point in all this consists in the fact that 
1 single transform on N points requires 
(approximately!) N2 multiplications. For the same 
reason, 1 single transform on N/2 points will 
require (N/2)2 = N2/4 multiplications!

● Hence, through the Danielson-Lanczos lemma, 
we may compute the N/2 values of cn in: 

2x(N2/4)+N=N2/2+N multiplications, instead of N2. 
Therefore, after this first subdivision, we gained 
a factor 2 in the number of operations!



  

Fast Fourier Transform (FFT)

● Now we notice that, provided N is a power of 
two: N = 2m, we may repeat the procedure by 
dividing the transform on the even points in the 
even and odd values of j, and the same for 
the odd points, by rewriting the original 
transform on N points into 4 transforms on 
N/4 points!

● This means 4x(N/4)2 = N2/4 multiplications, 

instead of N2, so we gained another factor 2 
in the number of operations!



  

Fast Fourier Transform (FFT)

● We can continue this procedure of dividing m 
times, so that at the end we will have N 
transforms on one single point!

● The transform on a single point is just the 
functions itself, as it may be seen from the 
definition:

therefore we will have a number of operations 
equal to: m x N = log2N x N !



  

Fast Fourier Transform (FFT)

● Example, for N = 8.
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Fast Fourier Transform (FFT)

● The correct  order of the couplings is given by 
the order of the bit-reversed positions: 
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Fast Fourier Transform (FFT)

● It is possible to apply the same arguments to the 
computation of the original function f(t), given its 
Fourier’s coefficients cn (Inverse FFT).

● By definition:

that is the original function can be reconstructed by 
dividing all the terms into even and odd values of n and 
by combining them with the coefficients WN-nj, as 
before! 



  

Fastest Fourier Transform of the 
West (FFTW)

● A fast and precise way to compute ffts in C (or 
fortran) is the use of the FFTW library.

● The library is written in C, but there are 
fortran77 and fortran90 wrappers to make the 
use of the library easy for fortran users too.

● The library is open-source and, therefore, 
portable on almost any machine, in contrast 
with proprietary library (e.g. Intel MKL or Cray’s 
CRAFFT) which have optimized performances 
on particular types of processors, but are not 
portable!



  

Fastest Fourier Transform of the 
West (FFTW)

● Very good performances (close or even better 
than proprietary libraries) and precision.

Comparison of 
performances of 
FFTW with 
respect to other 
libraries on an 
Intel 3.0 GHz 64-
bits processor



  

Fastest Fourier Transform of the 
West (FFTW)

● FFTW combines a collection of specialized 
algorithms which apply to different particular 
cases (N equal to powers of two, or some 
combinations of powers of prime numbers, etc.). 
Each of this algorithm is implemented in a 
“codelet” (there are currently about 150 codelets 
in the 3.3 version of the library!) and a special 
code called “planner” tries to find the best 
combination of codelets to make the 
computation of the FFT as faster as possible. 



  

Fastest Fourier Transform of the 
West (FFTW)

● After a suitable “plan” has been chosen by the 
planner (one may use special parameters when 
creating the plans to indicate to the planner how 
deep the search for the optimal plan must be 
carried on: the choice of the optimal plan may 
take even several minutes on a fast machine!), 
two arrays are passed to the planner which 
indicate the input and output values of the FFT.

● Once the plan has been created, the evaluation of 
the FFT is carried out by calling another function 
which takes the input array and transforms it into 
the output array!



  

Fastest Fourier Transform of the 
West (FFTW)

Note that:

1) The library includes special memory allocation 
functions (fftw_malloc) to ensure the alignment 
of data in RAM, to optimize the use of the 
vectorial capabilities of the CPU (SIMD);

2) The library supports multi-threads paradigms 
(pthreads, OpenMP) for shared memory 
machines (e.g. multi-core machines);

3) It supports MPI versions of the functions for 
distributed memory machines (e.g., clusters). 



  

Fastest Fourier Transform of the 
West (FFTW)

● Example of FFT of a vector of real data:
#include <fftw3.h>
...
double *in;
fftw_complex *out;
fftw_plan pf, pb;
...
// Variable allocation
int n = ...;
in = fftw_malloc( sizeof( double ) * n );
out = fftw_malloc( sizeof( fftw_complex ) * n );
...
// Create the forward and backward transform planes
unsigned int flags = FFTW_ESTIMATE;
pf = fftw_plan_dft_r2c_1d( n, in, out, flags );
pb = fftw_plan_dft_c2r_1d( n, out, in, flags );  // Notice the 
swap of in and out!
...
// Execute the fft-s
fftw_execute( pf );      // Computes the forward transform
fftw_execute( pb );      // Computes the backward transform



  

Fastest Fourier Transform of the 
West (FFTW)

● Example of FFT of a vector of real data:

● Notice the use of the “flags” variable, which can 
take values:

➢ FFTW_ESTIMATE, FFTW_MEASURE, FFTW_PATIENT, 
FFTW_EXAUSTIVE;

➢ FFTW_DESTROY_INPUT, FFTW_PRESERVE_INPUT

...
// Variable and plan de-allocation
fftw_free( in );
fftw_free( out );
fftw_destroy_plan( pf );
fftw_destroy_plan( pf );
}



  

Fastest Fourier Transform of the 
West (FFTW)

● For more information and documentation, visit:

http://www.fftw.org

http://www.fftw.org/
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