Boundary value problems

- Until now, we studied only initial value problems, namely differential equations in which the boundary conditions are all on one side of the computational domain.
- However, we will see when studying partial differential equations that many times one has to deal also with problems where the boundary conditions are on different sides of the computational domain. We refer to such problems as Boundary Value Problems (BVP).

Boundary value problems

- Let us suppose to have a model problem (we will see when studying partial differential equations that this is quite a common example!) of this type:
$d(x) \frac{d^{2} Y(x)}{d x^{2}}+f(x) \frac{d Y(x)}{d x}+g(x) Y(x)=h(x) \quad x \in[a, b]$
where $d(x), f(x), g(x)$ and $h(x)$ are known.
- To completely solve the problem, we have to give some information about the behavior of the solution (or its derivatives) in a and b !

Boundary value problems

- Generally it is sufficient to know two different values (since this is a second order differential equation!), e.g.:
> the solution on the two boundaries, in which case we talk of Dirichlet boundary conditions (Dirichlet b.c.);
> the first derivatives of the solution on the two boundaries (Neumann b.c.);
> the solution on one boundary and its first derivative on the other boundary (Robin b.c.).

Boundary value problems

- More specifically, we can distinguish 4 cases:

Case	Known quantities	Name
1	$Y(a)$ and $Y(b)$	Dirichlet b.c.
2	$Y^{\prime}(a)$ and $Y^{\prime}(b)$	Neumann b.c.
3	$Y^{\prime}(a)$ and $Y^{\prime}(b)$	Robin b.c.
4	$Y(a)$ and $Y^{\prime}(b)$	Robin b.c.

- To start solving the problem, as usual, we assume that we can make a discretization of the spatial domain by dividing the interval $[a, b]$ into N subintervals of width: $h=\frac{b-a}{N}$

Boundary value problems

- In such a way we identify $N+1$ discrete points x_{j} :

$$
x_{j}=a+j h ; \quad j=0, \ldots, N
$$

so that: $x_{0}=a, x_{N}=b$.

- Now, as we did for ODEs, we can write our equation on a generic grid-point x_{j} :

$$
\left.d\left(x_{j}\right) \frac{d^{2} Y(x)}{d x^{2}}\right|_{x_{j}}+\left.f\left(x_{j}\right) \frac{d Y(x)}{d x}\right|_{x_{j}}+g\left(x_{j}\right) Y\left(x_{j}\right)=h\left(x_{j}\right)
$$

- Now we have to find a suitable approximation for the first and second derivatives in x_{j} !

Boundary value problems

- We have already studied the finite difference approximations for the derivatives on a generic point x_{j}. For instance, second order f.d. approximations for the first and second derivatives are given by:

$$
\begin{aligned}
\left.\frac{d Y(x)}{d x}\right|_{x_{j}} & =\frac{Y_{j+1}-Y_{j-1}}{2 h}+O\left(h^{2}\right) \\
\left.\frac{d^{2} Y(x)}{d x^{2}}\right|_{x_{j}} & =\frac{Y_{j+1}-2 Y_{j}+Y_{j-1}}{h^{2}}+O\left(h^{2}\right)
\end{aligned}
$$

where, with Y_{j} we mean $Y\left(x_{j}\right)$, etc.

Boundary value problems

- Now we can put these approximations into the equation:

$$
d_{j} \frac{Y_{j+1}-2 Y_{j}+Y_{j-1}}{h^{2}}+f_{j} \frac{Y_{j+1}-Y_{j-1}}{2 h}+g_{j} Y_{j}=h_{j}
$$

- We can now re-arrange the terms as:

$$
Y_{j-1} \underbrace{\left[\frac{d_{j}}{h^{2}}-\frac{f_{j}}{2 h}\right]}_{\lambda_{j}}+Y_{j} \underbrace{\left[-\frac{2 d_{j}}{h^{2}}+g_{j}\right]}_{\mu_{j}}+Y_{j+1} \underbrace{\left[\frac{d_{j}}{h^{2}}+\frac{f_{j}}{2 h}\right]}_{\xi_{j}}=h_{j}
$$

where λ_{j}, μ_{j} and ξ_{j} are known quantities.

Boundary value problems

- Therefore, we have transformed our differential equation in a relation involving discrete quantities, as:

$$
\lambda_{j} Y_{j-1}+\mu_{j} Y_{j}+\xi_{j} Y_{j+1}=h_{j}, \quad \text { for } j=0, \ldots, N
$$

where all quantities are known, except Y_{j}, that are the unknowns of the problem!

- Of course, such a relation makes sense only for $j=1, \ldots, N-1$, since we do not have information about the behavior of the solution at the points x_{-1} and x_{N+1} which appear in the relation for $j=0$ and $j=N$.

Boundary value problems

- Thus, we have $N-1$ relations for $N+1$ unknowns Y_{j}. Of course the missing information can be obtained by taking into account the boundary conditions!
- Let us study separately the four cases outlined above.
- Case 1: we know the values of Y_{0} and Y_{N}.
- This is the simplest case: here we have actually $N-1$ relations for $N-1$ unknowns, that is the problem is perfectly solvable!

Dirichelet boundary conditions

- Let us write the relations for a simple case $N=5$.
- In this case, the grid-points are: $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and the unknowns are: $Y_{1}, Y_{2}, Y_{3}, Y_{4}$.
- The discrete form of the equation becomes:

$$
\begin{array}{rlrl}
j=1 & \mu_{1} Y_{1}+\xi_{1} Y_{2} & & =h_{1}-\lambda_{1} Y_{0} \\
j=2 & \lambda_{2} Y_{1}+\mu_{2} Y_{2}+\xi_{2} Y_{3} & =h_{2} \\
j=3 & \lambda_{3} Y_{2}+\mu_{3} Y_{3}+\xi_{3} Y_{4} & =h_{3} \\
j=4 & \lambda_{4} Y_{3}+\mu_{4} Y_{4} & =h_{4}-\xi_{4} Y_{5}
\end{array}
$$

that is a tridiagonal system of algebraic equations!

Dirichelet boundary conditions

- In the general case, we get a tridiagonal system of $N-1$ equations in $N-1$ unknowns Y_{l}, \ldots, Y_{N-l} :

$$
\begin{aligned}
& j=1 \\
& \mu_{1} Y_{1}+\xi_{1} Y_{2}=h_{1}-\lambda_{1} Y_{0} \\
& j=2, \ldots, N-2 \quad \lambda_{j} Y_{j-1}+\mu_{j} Y_{j}+\xi_{j} Y_{j+1}=h_{j} \\
& j=N-1 \quad \lambda_{N-1} Y_{N-2}+\mu_{N-1} Y_{N-1}=h_{N-1}-\xi_{N-1} Y_{N}
\end{aligned}
$$

- This can be solved, for instance, with the LU factorization algorithm!
- Case 2: we know the values of $Y^{\prime}{ }_{o}$ and $Y^{\prime}{ }_{N}$.

Neumann boundary conditions

- In this case, we consider the whole set of $N+1$ equations in which appear the quantities Y_{-1} and Y_{N+1}, but we can use the boundary conditions to get information about the latter.
- In fact, by writing the FD approximation for the first derivative for $j=0$ and $j=N$, we have:

$$
\begin{gathered}
Y_{0}^{\prime}=\frac{Y_{1}-Y_{-1}}{2 h} \Rightarrow Y_{-1}=Y_{1}-2 h Y_{0}^{\prime} \\
Y_{N}^{\prime}=\frac{Y_{N+1}-Y_{N-1}}{2 h} \Rightarrow Y_{N+1}=Y_{N-1}+2 h Y_{N}^{\prime}
\end{gathered}
$$

Neumann boundary conditions

- First, let us consider the particular case $N=5$ as an example. Now $x_{j}=x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and the unknowns are: $Y_{j}=Y_{0}, Y_{l}, Y_{2}, Y_{3}, Y_{4}, Y_{5}$.
- The values of Y_{-l} and $Y_{N+1}=Y_{6}$ are:

$$
Y_{-1}=Y_{1}+2 h Y_{0}^{\prime} \quad Y_{6}=Y_{4}+2 h Y_{5}^{\prime}
$$

and the discrete equations for $j=0$ and $j=5$ reads:

$$
\begin{aligned}
\lambda_{0} Y_{-1}+\mu_{0} Y_{0}+\xi_{0} Y_{1}=h_{0} & \Rightarrow \mu_{0} Y_{0}+\left(\xi_{0}+\lambda_{0}\right) Y_{1}=h_{0}-2 h \lambda_{0} Y_{0}^{\prime} \\
\lambda_{5} Y_{4}+\mu_{5} Y_{5}+\xi_{5} Y_{6}=h_{5} & \Rightarrow\left(\xi_{5}+\lambda_{5}\right) Y_{4}+\mu_{5} Y_{5}=h_{5}-2 h \xi_{5} Y_{5}^{\prime}
\end{aligned}
$$

Neumann boundary conditions

- We then get the tridiagonal system:

$$
\left.\begin{array}{rlrl}
\mu_{0} Y_{0}+\left(\xi_{0}+\lambda_{0}\right) Y_{1} & & & =h_{0}-2 h \lambda_{0} Y_{0}^{\prime} \\
\lambda_{1} Y_{0}+\mu_{1} Y_{1} & & & =h_{1} \\
\lambda_{2} Y_{1} & +\mu_{2} Y_{2}+\xi_{2} Y_{3} & & \\
& \lambda_{3} Y_{2}+\mu_{3} Y_{3}+\xi_{3} Y_{4} & & =h_{3} \\
& \lambda_{4} Y_{3}+\mu_{4} Y_{4}+\xi_{4} Y_{5} & =h_{4} \\
& & & \left(\xi_{5}+\lambda_{5}\right) Y_{4}+\mu_{5} Y_{5}
\end{array}\right)=h_{5}-2 h \xi_{5} Y_{5}^{\prime}
$$

of six equations for the six unknowns Y_{0}, \ldots, Y_{5}.

- In the general case of $N+l$ equations, we have:

Neumann boundary conditions

$$
\begin{array}{lrl}
j=0 & \mu_{0} Y_{0}+\left(\xi_{0}+\lambda_{0}\right) Y_{1} & =h_{0}-2 h \lambda_{0} Y_{0}^{\prime} \\
j=1, \ldots, N-1 & \lambda_{j} Y_{j-1}+\mu_{j} Y_{j}+\xi_{j} Y_{j+1} & =h_{j} \\
j=N & \left(\xi_{N}+\lambda_{N}\right) Y_{N-1}+\mu_{N} Y_{N} & =h_{N}-2 h \xi_{N} Y_{N}^{\prime}
\end{array}
$$

- Finally, for the case of Robin b.c. we have a mixed situation:
, If we know $Y^{\prime}{ }_{0}$ and Y_{N}, the system of equations becomes a system of N equations in the N unknowns: $Y_{0}, Y_{l}, \ldots, Y_{N-l}$:

Robin boundary conditions

$$
\begin{array}{lrl}
j=0 & \mu_{0} Y_{0}+\left(\xi_{0}+\lambda_{0}\right) Y_{1} & =h_{0}-2 h \lambda_{0} Y_{0}^{\prime} \\
j=1, \ldots, N-2 & \lambda_{j} Y_{j-1}+\mu_{j} Y_{j}+\xi_{j} Y_{j+1} & =h_{j} \\
j=N-1 & \lambda_{N-1} Y_{N-2}+\mu_{N-1} Y_{N-1} & =h_{N-1}-\xi_{N-1} Y_{N}
\end{array}
$$

, If we know Y_{0} and $Y^{\prime}{ }_{N}$, the system of equations becomes a system of N equations in the N unknowns: $Y_{1}, Y_{2}, \ldots, Y_{N}$:

$$
\begin{array}{lrl}
j=1 & \mu_{1} Y_{1}+\xi_{1} Y_{2} & =h_{1}-\lambda_{1} Y_{0} \\
j=2, \ldots, N-1 & \lambda_{j} Y_{j-1}+\mu_{j} Y_{j}+\xi_{j} Y_{j+1} & =h_{j} \\
j=N & \left(\xi_{N}+\lambda_{N}\right) Y_{N-1}+\mu_{N} Y_{N} & =h_{N}-2 h \xi_{N} Y_{N}^{\prime}
\end{array}
$$

An example: Chebyshev's Polynomials

- As an example of solution for a BVP, let us consider the solution of the equation:

$$
\left(1-x^{2}\right) \frac{d^{2} Y(x)}{d x^{2}}-x \frac{d Y(x)}{d x}+n^{2} Y(x)=0
$$

- It is "easy" to show that this equation has a denumerable infinity of solutions for each integer value of n, given by:

$$
Y(x)=T_{n}(x)=\cos (n \theta) \quad \text { where: } \theta(x)=\arccos (x)
$$

- The functions $T_{n}(x)$ are called Chebyshev polynomials.

An example: Chebyshev's Polynomials

- As an example of solution for a BVP, let us consider the solution of the equation:

$$
\left(1-x^{2}\right) \frac{d^{2} Y(x)}{d x^{2}}-x \frac{d Y(x)}{d x}+n^{2} Y(x)=0 \quad x \in[-1,+1]
$$

- It is "easy" to show that this equation has a denumerable infinity of solutions for each integer value of n, given by:

$$
Y(x)=T_{n}(x)=\cos (n \theta) \quad \text { where: } \theta(x)=\arccos (x)
$$

- The functions $T_{n}(x)$ are called Chebyshev polynomials.

An example: Chebyshev's Polynomials

- This equation corresponds to our general BVP in the case:

$$
d(x)=1-x^{2} ; \quad f(x)=-x ; \quad g(x)=n^{2} ; \quad h(x)=0 .
$$

- Are the solutions really "polynomials"? Yes, indeed:

$$
\begin{aligned}
& T_{0}(x)=\cos (0 \cdot \arccos (x))=1 \\
& T_{1}(x)=\cos (1 \cdot \arccos (x))=x \\
& T_{2}(x)=\cos (2 \cdot \arccos (x))=2 \cos ^{2}(\arccos (x))-1=2 x^{2}-1
\end{aligned}
$$

An example: Chebyshev's Polynomials

- We can solve this equation by using several kind of boundary conditions, since we know the analytical form of the solution. In particular, we have:

$$
\begin{aligned}
T_{n}(-1) & =\cos [n \arccos (-1)]=(-1)^{n} \\
T_{n}(+1) & =\cos [n \arccos (+1)]=+1 \\
T_{n}^{\prime}(x) & =\frac{d}{d x} \cos [n \theta(x)]=\frac{d}{d \theta} \cos (n \theta) \cdot \frac{d \theta}{d x}= \\
& =-\frac{1}{\sqrt{1-x^{2}}}[-n \sin (n \theta)]=n \frac{\sin [n \arccos (x)]}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$$
\lim _{x \rightarrow-1} T_{n}^{\prime}(x)=(-1)^{n} n^{2}
$$

$$
\lim _{x \rightarrow+1} T_{n}^{\prime}(x)=n^{2}
$$

An example: Chebyshev's Polynomials

- Therefore, we can get the solutions of the problem, given by the $T_{n}(x)$ for different kind of boundary conditions:

| Case | Known quantities | Values |
| :---: | :---: | :---: | :---: |
| 1 | $Y(a)$ and $Y(b)$ | $Y(-1)=(-1)^{n} ; \quad Y(+1)=1$ |
| 2 | $Y^{\prime}(a)$ and $Y^{\prime}(b)$ | $Y^{\prime}(-1)=(-1)^{n} n^{2} ; \quad Y^{\prime}(+1)=n^{2}$ |
| 3 | $Y^{\prime}(a)$ and $Y(b)$ | $Y^{\prime}(-1)=(-1)^{n} n^{2} ; \quad Y(+1)=1$ |
| 4 | $Y(a)$ and $Y^{\prime}(b)$ | $Y(-1)=(-1)^{n} ; \quad Y^{\prime}(+1)=n^{2}$ |

