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The equations of motion of a point thrown in a viscous fluid from the origin
of a Cartesian coordinates system are:
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where x and y represent the position of the point in the Cartesian frame of
reference during the motion, k is the friction coefficient of the fluid and g = 9.81
is the Earth’s gravitational acceleration (all quantities are in MKSA units).

Appropriate initial conditions for the equations are:

x(t = 0) = 0

y(t = 0) = 0
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where v0 is the modulus of the initial velocity of the point and θ is the angle
under which the point is thrown.

Solve numerically with a second order Runge-Kutta time scheme the system
of equations above up to the time in which the point reachs the ground (y = 0)
for at least five values of k in the range: k ∈ [0, 1] and fixed values of v0 and θ
and study how the range (distance from the origin to the point where the body
falls on the ground) depends on the value of k. Afterwards, chosen a single value
for k and θ, study how the range depends on v0 (for at least 5 values of v0 in
the range v0 ∈ [1, 5]). Finally, choose a value for k and v0 and study how the
range depends on θ by varying continously its value in the range θ ∈ [0◦, 90◦]
and determine approximately for which value of θ one gets the maximum range.

For comparison, one can check the correctness of the results for x and y with
the analytical results:
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