Computational Physics

21-09-2018

The equations of motion of a point thrown in a viscous fluid from the origin of a Cartesian coordinates system are:

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=-k \frac{d x}{d t} \\
& \frac{d^{2} y}{d t^{2}}=-k \frac{d y}{d t}-g
\end{aligned}
$$

where x and y represent the position of the point in the Cartesian frame of reference during the motion, k is the friction coefficient of the fluid and $g=9.81$ is the Earth's gravitational acceleration (all quantities are in MKSA units).

Appropriate initial conditions for the equations are:

$$
\begin{aligned}
x(t=0) & =0 \\
y(t=0) & =0 \\
\left.\frac{d x}{d t}\right|_{t=0} & =v_{0} \cos \theta \\
\left.\frac{d y}{d t}\right|_{t=0} & =v_{0} \sin \theta
\end{aligned}
$$

where v_{0} is the modulus of the initial velocity of the point and θ is the angle under which the point is thrown.

Solve numerically with a second order Runge-Kutta time scheme the system of equations above up to the time in which the point reachs the ground $(y=0)$ for at least five values of k in the range: $k \in[0,1]$ and fixed values of v_{0} and θ and study how the range (distance from the origin to the point where the body falls on the ground) depends on the value of k. Afterwards, chosen a single value for k and θ, study how the range depends on v_{0} (for at least 5 values of v_{0} in the range $\left.v_{0} \in[1,5]\right)$. Finally, choose a value for k and v_{0} and study how the range depends on θ by varying continously its value in the range $\theta \in\left[0^{\circ}, 90^{\circ}\right]$ and determine approximately for which value of θ one gets the maximum range.

For comparison, one can check the correctness of the results for x and y with the analytical results:

$$
\begin{aligned}
x(t) & =\frac{v_{0} \cos \theta}{k}\left(1-e^{-k t}\right) \\
y(t) & \left.=\frac{v_{0} \sin \theta}{k}\left(1-e^{-k t}\right)-\frac{g}{k}\left[\frac{1}{k}\left(1-e^{-k t}\right)-t\right)\right]
\end{aligned}
$$

