Exam of Computational Physics

27-07-2018

Solve the following differential equation:

$$
\frac{d^{2} y}{d t^{2}}-\frac{2 \omega}{2 \omega t+1} \frac{d y}{d t}+(2 \omega t+1)^{2} y=0
$$

in the time interval $t \in[0,5]$, for the values of $\omega=1,2,3,4,5$, by using a second order Runge-Kutta time scheme and the following initial conditions:

$$
y(t=0)=1 ; \quad y^{\prime}(t=0)=0
$$

and compare the result with the analytical solution:

$$
y=\cos \left(\omega t^{2}+t\right)
$$

Verify that the numerical error (namely the difference in absolute value between the numerical and analytical solutions) for a fixed time step h, is proportional to ω^{3}.

