Computational Physics

01-03-2018
In quantum mechanics, the motion of an electron in a parabolic potential well (quantistic harmonic oscillator) is described by the equation:

$$
\frac{d^{2} \psi(x)}{d x^{2}}=\left(x^{2}-2 n-1\right) \psi(x)
$$

with $x \in[-\infty,+\infty]$ and boundary conditions: $\psi(x)=0$ for $x \rightarrow \pm \infty$.
This equation has an analytic solution in the form:

$$
\psi(x)=\psi_{n}(x)=H_{n}(x) e^{-\frac{x^{2}}{2}}
$$

where the functions $H_{n}(x)$ are the so-called Hermite polynomials, which are polynomials of degree n for $x \in[-\infty,+\infty]$.

The first seven Hermite polynomials are (for $n=0, \ldots, 6$):

$$
\begin{aligned}
H_{0}(x) & =1 \\
H_{1}(x) & =2 x \\
H_{2}(x) & =4 x^{2}-2 \\
H_{3}(x) & =8 x^{3}-12 x \\
H_{4}(x) & =16 x^{4}-48 x^{2}+12 \\
H_{5}(x) & =32 x^{5}-160 x^{3}+120 x \\
H_{6}(x) & =64 x^{6}-480 x^{4}+720 x^{2}-120
\end{aligned}
$$

Solve numerically the equation for the quantistic harmonic oscillator for the values of n given above, in a suitable interval $x \in[0, a]$ (see the suggestion below about how to find an appropriate value of a), with boundary conditions:

$$
\begin{cases}\psi(x=0)=(-1)^{n / 2} \frac{n!}{(n / 2)!} & \text { for even } n \\ \psi^{\prime}(x=0)=(-1)^{(n-1) / 2} \frac{(n+1)!}{[(n+1) / 2]!} & \text { for odd } n\end{cases}
$$

and compare the results with the analytic solution given above.
Suggestion: the equation should be solved in an infinite interval, that is of course not possible numerically. However, due to the presence of the term $e^{-\frac{x^{2}}{2}}$, the solution becomes quickly very close to zero, even for relatively small values of x. Therefore, one can integrate the equation in an interval $x \in[0,+a]$ such that the solution is larger or equal than the machine precision $\left(\epsilon \sim 2.2 \cdot 10^{-16}\right.$ for the type "double"). In order to find the value of a, (since the functional form for $H_{n}(x)$ is not known a-priori), one can notice that the dominant term (for large values of $x)$ for $H_{n}(x)$ is $H_{n}(x) \sim h(x, n)=2^{n} x^{n}$. Therefore, one can estimate the value of a as the maximum value for which $h(x, n)$ is (approximately) larger or equal than the machine precision ϵ.

