Computational physics

05-10-2017

Solve the following differential equation:

$$
\frac{d^{2} y}{d t^{2}}-\frac{2 \omega}{2 \omega t+1} \frac{d y}{d t}+(2 \omega t+1)^{2} y=0
$$

defined in the interval $t \in[0,5]$, for values of $\omega=1,2,3,4,5$, by using a second order Runge-Kutta time scheme.

Use the following initial conditions:

$$
y(t=0)=0 ; \quad y^{\prime}(t=0)=1
$$

and compare the result with the analytical solution:

$$
y=A \sin \left(\omega t^{2}+t\right)
$$

valid for $A=1$ for the values of ω given above. Verify that the numerical error (difference, in absolute value, between the numerical and analytical solutions) for a fixed value of the time discretization h, is proportional to ω^{3}.

